BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

BP PRODUCTS NORTH AMERICA INC.,)
)
Petitioner,) PCB 26-001
) Agency Decision Appeal
v.) 1191155009—Madison County
) ILD980503106
ILLINOIS ENVIRONMENTAL) Log No. B-145R-CA-78 and CA-133
PROTECTION AGENCY,) RCRA Permit - 24A
)
Respondent.)
)

NOTICE OF FILING

TO: Division of Legal Counsel
Illinois Environmental Protection Agency
1021 North Grand Avenue East
P.O. Box 19276
Springfield IL 62794-9276
epa.dlc@illinois.gov
Melanie.Jarvis@Illinois.gov

PLEASE TAKE NOTICE that I have today filed with the Office of the Clerk of the Pollution Control Board BP Products North America Inc.'s Petition to Appeal Illinois EPA's Determination, a copy of which is herewith served upon you.

Dated: October 6, 2025 Respectfully submitted,

BP PRODUCTS NORTH AMERICA INC.

By: /s/ Alexander J. Bandza

BARNES & THORNBURG LLP One N. Wacker Drive, Suite 4400 Chicago, IL 60606-2833 (312) 357-1313 abandza@btlaw.com

Attorney for BP Products North America Inc.

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

BP PRODUCTS NORTH AMERICA INC.,)
)
Petitioner,) PCB 26-001
) Agency Decision Appeal
v.) 1191155009—Madison County
) ILD980503106
ILLINOIS ENVIRONMENTAL) Log No. B-145R-CA-78 and CA-133
PROTECTION AGENCY,) RCRA Permit - 24A
)
Respondent.)
)

BP PRODUCTS NORTH AMERICA INC.'s PETITION TO APPEAL <u>ILLINOIS EPA's DETERMINATION</u>

NOW COMES the Petitioner, BP Products North America Inc. ("BPPNA"), by its undersigned attorney, and, pursuant to the Illinois Environmental Protection Act ("Act") (415 ILCS 5/40(a)(1)) and 35 Ill. Adm. Code §§ 105.208, 702.107, 705.212, hereby petitions the Illinois Pollution Control Board ("Board") to appeal the Illinois Environmental Protection Agency's ("Illinois EPA" and "Agency") letter decision on submittals associated with corrective action under a Resource Conservation and Recovery Act ("RCRA") permit to BPPNA ("Letter") as it relates to the remedial activities at the Wood River, Illinois, property ("Property"). ¹

In support of this Petition, BPPNA respectfully states as follows:²

I. RECORD OF APPEAL

- 1. On or about August 18, 2016, BPPNA wrote to Illinois EPA concerning "IEPA Letter Dated May 20, 2016 Response to Conditions 3 and 4." (Ex. A.)
 - 2. On or about May 25, 2023, BPPNA wrote to Illinois EPA concerning "Corrective

¹ BPPNA and Illinois EPA are individually a "Party" and, collectively, the "Parties."

² BPPNA reserves its rights to further amend this Petition based on subsequent filings in this matter.

Action Modification Request – Light Oils Dock Area." (**Ex. B**.)

3. On or about May 21, 2025, Illinois EPA issued the Letter to BPPNA. (Ex. C.)

II. THIS APPEAL IS TIMELY FILED

- 4. On July 1, 2025, the Parties timely filed a notice to extend the 35-day period within which BPPNA may appeal the Letter. *See* 415 ILCS 5/40(a)(1); 35 Ill. Adm. Code §§ 101.300(b), 105.206(c), 105.208(a), (c).
- 5. By its Order dated July 10, 2025, the Board granted this extension request so as to allow BPPNA up to and until October 6, 2025, to timely file an appeal. (*See* PCB 26-01 Order (July 10, 2025).) This appeal is timely filed.

III. <u>BACKGROUND</u>

- 6. BPPNA submitted to the Illinois EPA a Corrective Action Modification Request for the Light Oils Dock ("LOD") Area located within Parcel B of the former petroleum refinery Riverfront facility located on the Property. (Ex. B at 1.) A Riverfront Facility Parcel Map is provided with Exhibit B as Figure 1. (*See id.* at Fig. 1.)
- 7. We divide this Background into three parts: (A) an overview of the background to BPPNA's proposal; (B) BPPNA's proposal; and (C) Illinois EPA's response (*i.e.*, the Letter).

A. Background to BPPNA's Proposal

8. The Riverfront facility Groundwater Corrective Action Program requires hydraulic control of Uppermost Aquifer ("<u>UMA</u>") groundwater in the Riverfront Groundwater Management Zone ("<u>GMZ</u>") via the Cone of Depression ("<u>COD</u>") well system located on the BP Wood River Main Plant facility. (*Id.* at 1.) The flow control of the COD well system is intended to prevent contaminant migration beyond the boundaries of the Riverfront facility for groundwater above Class 1 Groundwater Quality Standards ("<u>GOS</u>") for volatile organic compounds ("<u>YOCs</u>") and is the basis for the GMZ. (*Id.*) The current corrective action (*i.e.*, hydraulic control) is measured

through quarterly groundwater gauging and contouring. (*Id.*) Compliance is verified by monitoring contaminants in groundwater in GMZ boundary wells. (*Id.*)

9. Groundwater monitoring is currently completed at 13 monitoring wells located in the LOD Area in accordance with the Illinois EPA letter dated May 11, 2009. (*Id.* at 2.) Of the 13 LOD monitoring program wells, 5 are also Riverfront Observation Monitoring Wells ("**RFOWs**") and designated GMZ boundary wells monitored under the RCRA Permit. (*Id.*) One additional monitoring well located within the LOD Area, Riverfront Gradient Control ("**RF GC**") monitoring well G102, is also monitored under the current RCRA Permit. (*Id.*)

B. BPPNA's Proposal to Modify the Corrective Action

- 10. BPPNA proposed a Corrective Action Modification ("CA-Modification"), which included implementing a biological treatment program for impacted UMA groundwater within the LOD Area in lieu of hydraulic flow control. (See id. & Fig. 2.) The biological treatment program would consist of biosparging followed by natural attenuation mechanisms enhanced by passive bioventing. (Id. at 1.) In lieu of measuring hydraulic control in in the LOD Area, the biological treatment program would provide contaminant control. (Id.) Compliance would be verified by monitoring contaminants in groundwater in GMZ boundary wells. (Id.) Put another way, the proposed CA-Modification would replace the current hydraulic control requirements with contaminant control via the proposed remedy—i.e., groundwater protection will be achieved through implementation of the remedy and associated groundwater monitoring. (Id. at 6.)
- 11. The proposed CA-Modification would apply to 14 monitoring wells located within the LOD Area as depicted on Figure 2 of Exhibit B. (*See id.* at 7.) The proposed biosparge treatment area is shown on Figure 7 of Exhibit B. (*See id.*) Under the current Groundwater Corrective Action Program, 6 of the 14 monitoring wells in the LOD Area are included in the quarterly hydraulic control gauging and contouring program: RFOWs LOD-1, LOD-2, LOD-5,

LOD-7, RL-17B, and RF GC well G102. (*Id.*) RFOWs LOD-1, LOD-2, LOD-5, LOD-7, and RL-17B are also designated GMZ boundary wells. (*Id.*) Additionally, LOD monitoring program wells LOD-6 and LOD-9 are designated RFOWs under the optimized groundwater monitoring program approved by Illinois EPA in a letter dated January 19, 2023. (*Id.*)

- 12. Under the proposed CA-Modification:
 - a. RFOWs LOD-1, LOD-2, LOD-5, LOD-7, and RL-17B in the LOD Area would no longer be part of the quarterly hydraulic control gauging and contouring program or LOD monitoring program but would continue to be sampled under the RCRA permit;
 - b. LOD-6 and LOD-9, which are designated RFOWs to be sampled annually under the optimized groundwater monitoring program, would no longer be monitored under the LOD monitoring program;
 - LOD monitoring program wells LOD-3, LOD-3B, LOD-4, LOD-8, RL-17, and RL-18 would continue to be monitored in accordance with the Illinois EPA letter dated May 11, 2009; and
 - d. RF GC monitoring well G102 would no longer be part of the quarterly hydraulic control gauging and contouring program. (*Id.*)

C. Illinois EPA's Response to BPPNA's Proposal (i.e., the Letter)

- 13. On or about May 21, 2025, Illinois EPA issued the Letter to BPPNA. (*See* Ex. C.) Illinois EPA approved the CA-Modification with the following four conditions. (*Id.* at 2.)
- 14. **First**, Condition 5 of the May 11, 2009 Illinois EPA letter (Log No. B-145-CA-63), which outlined requirements for 14 wells to be sampled in the LOD Area, would continue to apply. (*Id.*) Reporting dates in the current permit (Log No. B-145R2) would continue to apply. (*Id.*)
 - 15. **Second**, Illinois EPA rejected BPPNA's request to remove gauging requirements

for well G102. (*Id.*) Illinois EPA's rationale for such a rejection was that hydraulic control continues to be required for the remainder of the GMZ, and BPPNA purportedly did not provide adequate justification to remove this requirement from Section IV of the RCRA permit. (*See id.*)

- 16. Third, Illinois EPA rejected BPPNA's request to remove monitoring wells LOD-1, LOD-2, LOD-5, LOD-6, LOD-7, LOD-9, and RL-17B from the LOD Area monitoring program.

 (Id.) Illinois EPA's rational for such a rejection is that because these wells are required to be monitored by the site-wide groundwater corrective action program (Section IV) of the RCRA permit, "gauging and monitoring for constituents of concern (COCs) for the LOD Area (benzene, toluene, ethylbenzene, total xylenes (BETX), and total and dissolved arsenic and lead) is readily available and will further support [BPPNA's] ongoing demonstrations of the effectiveness of the corrective measures." (See id.)
- 17. **Fourth**, Illinois EPA approved, with comments, BPPNA's request for biosparging to reduce concentrations of contaminants in groundwater and create aerobic conditions. (*Id.* at 3.)

IV. GROUNDS FOR APPEAL

- 18. The Board is a statutorily created entity. 415 ILCS 5/5(a). The Board is authorized to conduct proceedings, including petitions for review of Illinois EPA final determinations, pursuant to the Act and Board regulations. *See id.* 5/5(d); 35 Ill. Adm. Code § 105.204(f).
- 19. "[A]ll actions taken by the [Illinois EPA] pursuant to 35 Ill. Adm. Code 702 through 704, 721 through 728, 730, 733, 738, or 739 are to be done as part of an original permit application or a proceeding for modification of an issued permit. Such actions are subject to the procedural requirements of 35 Ill. Adm. Code 705." 35 Ill. Adm. Code § 702.107. "Any final Agency action on an original permit application, a proceeding for modification of an issued permit, or any action for review of a final Agency determination required by these regulations may be appealed to the Board pursuant to Title X of the [Act] and 35 Ill. Adm. Code 105 and 705.212." *Id.* § 702.107(a).

20. This Petition identifies three conditions of the Letter that are not necessary to accomplish the purposes of the Act and/or Board regulations and are thus arbitrary and capricious ("<u>Challenged Conditions</u>"). Each Challenged Condition is set forth below.

A. Condition No. 1

21. Illinois EPA provided the following Condition No. 1 in the Letter:

The May 11, 2009 Illinois EPA letter (Log No. B-145-CA-63) outlined requirements for 14 wells to be sampled at the LOD Area. Requirements of Condition 5 of the letter continue to apply, with the exception of the due dates for reporting. Reporting dates in the current permit (Log No. B-145R2) shall be followed:

The uppermost aquifer groundwater monitoring at the LOD Area must continue in accordance with the requirements found in the RCRA Permit and all previous Illinois EPA letters addressing the LOD Area, which includes:

- a. Semi-annual sampling of uppermost aquifer wells LOD-1, LOD-2, LOD-3, LOD-3B, LOD-4, LOD-5, LOD-6, LOD-7, LOD-8, LOD-9, RL-17, RL-17B, and RL-18, for benzene, ethylbenzene, toluene, and xylenes (BETX), and total and dissolved arsenic and lead;
- b. Collection of quarterly fluid level measurements; and
- c. Reporting within the Riverfront Groundwater Corrective Action Semiannual Reports.

(Letter at 2 (emphasis in original).)

- 22. As to Condition No. 1(a), BPPNA believes that annual sampling of wells LOD-5, LOD-6, and LOD-9 is adequate to monitor progress of the proposed CA-Modification and is protective of human health and the environment. BPPNA denies that the balance of well sampling under Condition No. 1(a) is technically justified or is necessary to accomplish the purposes of the Act or Board regulations.
- 23. As to Condition No. 1(b), BPPNA believes that quarterly fluid level measurements of wells LOD-1, LOD-2, LOD-5, LOD-7, RL-17B, LOD-6, and LOD-9 are not necessary because,

as outlined in the proposed CA Modification, the transition to contaminant control will serve to determine compliance with Class 1 groundwater standards at the GMZ boundary for the LOD. Accordingly, Condition No. 1(b) is not technically justified nor necessary to accomplish the purposes of the Act or Board regulations.

B. Condition No. 2

24. Illinois EPA provided the following Condition No. 2 in the Letter:

The request to remove gauging requirements for well G 102 cannot be approved. Hydraulic control continues to be required for the remainder of the groundwater management zone (GMZ) and the facility has not provided adequate justification to remove this requirement for the Groundwater Corrective Action Program in Section IV of the permit.

(Letter at 2.)

25. As to Condition No. 2, BPPNA believes that quarterly fluid level measurements of well G102 is not necessary because, as outlined in the proposed CA Modification, the transition to contaminant control will serve to determine compliance with Class 1 groundwater standards at the GMZ boundary for the LOD. Accordingly, Condition No. 2 is not technically justified nor necessary to accomplish the purposes of the Act or Board regulations.

C. Condition No. 3

26. Illinois EPA provided the following Condition No. 2 in the Letter:

The Illinois EPA cannot approve the request to remove monitoring wells LOD-1, LOD-2, LOD-5, LOD-6, LOD-7, LOD-9, and RL-17B from the LOD Area monitoring program. The Illinois EPA acknowledges these wells are required to be monitored by the site-wide groundwater corrective action program (Section IV) of the permit; therefore, gauging and monitoring for constituents of concern (COCs) for the LOD Area (benzene, toluene, ethylbenzene, total xylenes (BETX), and total and dissolved arsenic and lead) is readily available and will further support BP's ongoing demonstrations of the effectiveness of the corrective measures. Continue to use data collected at these wells to evaluate the LOD Area conditions and effectiveness of corrective action.

(Letter at 2.)

- As to Condition No. 3, BPPNA agrees that a groundwater sampling program is necessary to determine compliance with the RCRA permit at the GMZ boundary. However, BPPNA disagrees with Illinois EPA's requested sampling frequency for LOD-5, LOD-6, and LOD-9. BPPNA believes that annual sampling is sufficient to monitor progress of the proposed CA-Modification and ensure that it is protective of human health and the environment. BPPNA believes that quarterly fluid level measurements of wells LOD-1, LOD-2, LOD-5, LOD-7, RL-17B, LOD-6, and LOD-9 are not necessary because, as outlined in the proposed CA Modification, contaminant control will serve to demonstrate compliance with Class 1 groundwater standards at the GMZ boundary for the LOD. Accordingly, these specific requirements of Condition No. 3 are not technically justified nor necessary to accomplish the purposes of the Act or Board regulations.
- 28. BPPNA does not object to the balance of Condition No. 3, including the constituents proposed and the sampling frequency of the other wells identified in Condition No. 3.

* * * * *

- 29. BPPNA's proposed CA-Modification involves the installation of an active remedy specifically designed to target contaminants of concern in the LOD. Accordingly, hydraulic control is no longer needed to achieve compliance with the RCRA permit at the GMZ boundary. Illinois EPA's Challenged Conditions—*i.e.*, obligating BPPNA to continue gauging for the purposes of measuring hydraulic control at the LOD—are counterproductive and unnecessary, and do not contribute to the protection of human health and the environment. Additionally, the sampling frequency outlined in BPPNA's proposed CA-Modification is adequate for the purposes of determining compliance with Class 1 groundwater standards at the GMZ boundary.
- 30. BPPNA's proposed CA-Modification, and the installation of the proposed biosparge system at the LOD contemplated therein, proactively reduces risk. Accordingly,

BPPNA should not be bound to the Challenged Conditions identified above, which fundamentally

are outdated and duplicative requirements that do not align with the shared goals of risk reduction.

31. For these reasons, and others that may be further developed in this proceeding,

BPPNA requests that the Board remand the Letter for Illinois EPA to address the Challenged

Conditions and re-issue approval of BPPNA's proposed CA-Modification without the same.

WHEREFORE, for the reasons stated above, BPPNA requests that the Board: (1) grant

review of Illinois EPA's issuance of the Letter and remand the Letter to Illinois EPA for re-

issuance consistent with the Act, Board regulations, and BPPNA's requests above, which includes

addressing the Challenged Conditions; and (2) order any other relief that is just and proper.

Dated: October 6, 2025

Respectfully submitted,

BP PRODUCTS NORTH AMERICA INC.

By: /s/ Alexander J. Bandza

Alexander J. Bandza, Esq.

BARNES & THORNBURG LLP

One N. Wacker Drive, Suite 4400

Chicago, IL 60606-2833

(312) 357-1313

abandza@btlaw.com

Attorney for BP Products North America Inc.

- 9 -

CERTIFICATE OF E-MAIL SERVICE

I, the undersigned, certify the following:

- That I have served the attached BP Products North America Inc.'s Petition to Appeal Illinois EPA's Determination, by e-mail upon the Illinois Environmental Protection Agency at the e-mail address of epa.dlc@illinois.gov and Melanie.Jarvis@Illinois.gov.
- That my e-mail address is <u>abandza@btlaw.com</u>.
- That the number of pages in the e-mail transmission is 10.
- That the e-mail transmission took place before 5:00 p.m. on the date of Oct. 6, 2025.

/s/ Alexander J. Bandza

An Attorney for BP Products North America Inc.

EXHIBIT A

Illinois Environmental Protection Agency

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

ILLINOIS EPA RCRA CORRECTIVE ACTION CERTIFICATION

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

1.0	Facility Identification			
	Name BP Wood River Riverfront Pr	opertyParcel	B&C	County Madison
	Street Address 301 Evans Avenue			Site No. (IEPA) 1191155009
	City Wood River			Site No. (USEPA) ILD980503106
2.0	Owner Information		3.0 Oper	ator Information
	Name BP Products North America, I	Inc.	Name BP	Products North America, Inc.
	Mail Address 301 Evans Avenue		Mail Addres	s 301 Evans Avenue
	City Wood River		City Wood	River
	State IL Zip Code 62095		State IL	Zip Code 62095
	Contact Name Lori Littrell		Contact Nar	me Lori Littrell
	Contact Title Operations Project Ma	nager	Contact Title	Operations Project Manager
	Phone 312.809.3395		Phone 312	2.809.3395
4.0		IEPA Permi Date of Las Log No. of I s this submittal	it Log No. <u>B-1-</u> it IEPA Letter o Last IEPA Lette include ground	
	Response to Conditions 3 & 4 of IEPA	4 5.20.16 Letter		
5.0	Date of Submittal 8/18/2016 (briefly describe what is being submitted)			
	Response to Conditions 3 & 4 of IEPA	A Letter Dated (05/20/2016 (Cd	ndition 2 addressed under separate
	_cover)			
6.0	(identify all documents in submittal, inclu Response to Conditions 3 & 4 of IEPA			
	cover)			

7.0 Certification Statement

(This statement is part of the overall certification being provided by the owner/operator, professional and laboratory in Items 7.1, 7.2 and 7.3 below). The activities described in the subject submittals have been carried out in accordance with procedures approved by Illinois EPA. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** IEPA RCRA Corrective Action Certification Page 2 For: Parcel B&C-IEPA 5.20.16 Cond 3&4 Date of Submission: 8/18/2016 7.1 Owner/Operator Certification (Must be completed for all submittals. Certification and signature requirements are set forth in 35 IAC 702.126.) All submittals pertaining to the corrective action requirements set forth in a RCRA Permit must be signed by the person designated below (or by a duly authorized representative of that person); 1. For a Corporation, by a principal executive officer of at least the level of vice president. 2. For a Partnership or Sole Proprietorship, by a general partner or the proprietor, respectively. 3. For a Governmental Entity, by either a principal executive officer or a ranking elected official. A person is a duly authorized representative only if: 1. the authorization is made in writing by a person described above; and 2. Owner Signature: Title: Operations Project Manager Operator Signature: Title: Operations Project Manager 7.2 (if necessary) Work carried out in this submittal or the regulations may also be subject to other laws governing professional services, such as the Illinois Professional Land Surveyor Act of 1989, the Professional Engineering Practice Act of 1989, the Professional Geologist Licensing Act, and the Structural Engineering Licensing Act of 1989. No one is relieved from compliance with these laws and the regulations adopted pursuant to these laws. All work that falls within the scope and definitions of these laws must be performed in compliance with them. The Illinois EPA may refer any discovered violation of these laws to the appropriate regulating authority. Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44 (h)) Professional's Signature: Professional's Name _____ Professional's Seal: Address City Zip Code State Phone 7.3 (if necessary)

The sample collection, handling, preservation, preparation and analysis efforts for which this laboratory

was respons	sible were carried out in accordance with p	rocedures approved by Illinois EPA.
Name of La	boratory	
		Date:
Sig	nature of Laboratory Responsible Officer	
Mailing Add	ress of Laboratory	
Address _		
City		Name and Title of Laboratory Responsible Office
State	Zip Code	

Remediation Management Services Company

150 West Warrenville Road Naperville, IL 60563

> Office: (312)809-3395 Mobile: (630)386-1784 Lori.Littrell@bp.com

August 18, 2016

Ms. Joyce Munie, P.E.
Illinois Environmental Protection Agency
Bureau of Land – Division of Land Pollution Control, Permit Section
1021 North Grand Avenue East
Springfield, Illinois 62794-9276

Re: IEPA Letter Dated May 20, 2016
Response to Conditions 3 and 4
Log No. B-145R-CA-48 (Parcels B and C)
ILD980503106 – BP Wood River Riverfront Property
BP Products North America Inc.
1191155009 – Madison County

Dear Ms. Munie:

BP Products North America Inc. (BP) is submitting this response for Conditions 3 through 4 of the Illinois Environmental Protection Agency's (Illinois EPA) letter of May 20, 2016 (Attachment 1), for Riverfront Property Parcels B and C (Figures 1 and 2). BP concurs with general Conditions 1, 5, 6, and 7, while the response for Condition 2 (Parcel B Environmental Land Use Control) is provided under separate cover. This letter addresses Illinois EPA conditions 3 and 4 presented in bold italic.

3: Within ninety (90) days of the date of this letter, submit a work plan, for Illinois EPA review and approval, for investigation of the uppermost aquifer in the East Corridor of Parcel B.

BP believes that further investigation of the uppermost aquifer (UMA) in the East Corridor of Parcel B is not warranted for the following reasons as discussed in further detail below:

- A. The network of existing UMA wells provides adequate coverage for the East Corridor.
- B. There is limited impact in the UMA wells in the vicinity of the East Corridor.
- C. There appears to be hydrostratigraphic separation between the perched zone and the UMA zones, and hydraulic control is maintained for the area as required under permit.
- A. There are two existing UMA wells in the East Corridor (LOD-4 and R529) in the western half and central portion of the East Corridor, and UMA Groundwater Management Zone (GMZ) boundary well G113 is located in close proximity of the eastern boundary of the East Corridor. The locations of these wells, relative to soil and perched groundwater impact identified in the May 2006 Parcel B Land Reuse Investigation Report and Closure Plan, are shown in Attachment 3-1. BP believes that the spacing of these wells across the East Corridor, along with their well monitoring interval, provides an appropriate number of monitoring locations for this area.
- B. Groundwater analytical results for these three wells (LOD-4, R529 and G113) for the last five years

BP Response to IEPA Letter Dated May 20, 2016 (Parcels B and C) – (Conditions 3 and 4)

August 18, 2016

Page 2 of 3

(2012-2016) of monitoring (which is representative of post-LNAPL removal efforts) is provided in Attachment 3-2. Groundwater quality exceedances only occurred in G113 for arsenic, and in R529 for benzene and bis(2-ethylhexyl)phthalate one time each. Arsenic is a naturally-occurring compound, and bis(2-ethylhexyl)phthalate is a common field/laboratory artifact.

C. The Parcel B Land Reuse Investigation Report and Closure Plan Dated May 2006 indicates a highly plastic clay serves as an aquitard between the perched and UMA zones in the vicinity of the East Corridor. Hydrogeologic cross-sections for the East Corridor illustrating this clay zone are shown in Attachment 3-3. A comparison of fluid levels in select perched wells and the UMA wells for the western, central, and eastern portions of the East Corridor is provided in Attachment 3-4. The groundwater levels for the perched wells are distinctly elevated above those for the UMA wells. As required by permit, UMA groundwater in the East Corridor of Parcel B is captured by COD gradient control wells at the Main Plant as shown in Attachment 3-5.

Based on the historical source removal efforts (LNAPL removal from the trench area), the existing coverage of UMA wells, the favorable groundwater analytical results for the UMA wells, and the groundwater transport and fate considerations (hydrostratigraphic separation and groundwater migration control) noted above, it is BP's opinion that the UMA groundwater quality is of limited risk to human health and the environment, and that further investigation of the UMA at the East Corridor of Parcel B is not warranted.

The Illinois EPA May 20, 2016, letter contained the following paragraph with regard to LNAPL recovery operations in Parcel B and C:

- 4: While the facility may cease operation of the western portion of the trench within Parcel B, requirements of the January 10, 2011 Illinois EPA letter (Log No. B-145R-CA-10) remain with regards to Parcel C. This determination is based on the following:
 - a. The facility continues to detect product at wells FCSA-MW-03 and FCSA-MW-05.
 - b. The facility must still address soil and groundwater at Parcel C.
 - c. The facility must operate the east portion of the FCSA recovery trench, located at Parcel C, in accordance with the requirements found in the RCRA Permit and all previous Illinois EPA letters addressing the trench.

The January 10, 2011, Illinois EPA letter referenced in Condition 4 above is provided in Attachment 4-1, and the FCSA layout is shown in Attachment 4-2.

BP offers the following comments, which are discussed in detail below, with regard to the continued operation of the FSCA recovery trench located at Parcel C:

- A. Based on the lack of recoverable LNAPL observed in the recovery trench, it is BP's opinion that active operation of the FCSA recovery trench is not warranted.
- B. BP proposes quarterly inspections and gauging of the sumps.
- A. BP previously informed the Illinois EPA in quarterly Riverfront Progress Reports that the recovery trench sump (RTS) pumps located in the FCSA recovery trench had been removed in the third quarter of 2014 due to the lack of routinely observable LNAPL (last record of fluid removal for the sumps was April 17, 2013).

BP Response to IEPA Letter Dated May 20, 2016 (Parcels B and C) – (Conditions 3 and 4)

August 18, 2016

Page 3 of 3

A summary of the LNAPL detected in recovery trench sumps (RTS-1 to RTS-7) along with LNAPL containing wells FCSA-MW03 and FCSA-MW05 and other nearby wells since the third quarter of 2014 is provided in Attachment 4-3. LNAPL was not detected in RTS-1 to RTS-7 or the wells near FCSA-MW03 and FCSA-MW05 since the third quarter of 2014. It is concluded that a majority of the LNAPL remaining is residual and non-mobile in the soil above the UMA, such that further operation of the trench sumps is not warranted.

BP proposes to quarterly monitoring and periodic LNAPL removal through 2016 and 2017, and to provide continued updates in the 90-day progress reports. Bailing, absorbent socks, or similar means of recovering LNAPL product will continue for FCSA-MW03 and FCSA-MW05. The pumps are currently stored at the BP Main Plant for future reinstallation if conditions would warrant.

B. If BP concludes that LNAPL remediation is complete following inspections through 2017, BP will comply with the requirements of the January 10, 2011, Illinois EPA letter, and will address the groundwater corrective measures in an Investigation Report and Closure Plan. The Investigation Report and Closure Plan will address Condition 5 of the November 13, 2003, IEPA letter (Log Nos. B-145-CA20, 34, and 43) regarding groundwater. In addition, BP will also further evaluate whether perched groundwater is in hydrostratigraphic connection with the uppermost aquifer in the vicinity of Parcel C within the Land Reuse Investigation Report and Closure Plan.

If you have any comments or questions, please contact me at (312) 809-3395.

Sincerely,

Lori G. Littrell

Operations Project Manager, BP

lori a lettrich

Remediation Management Services Company

An affiliate of BP Products NA Inc.

Figures and Attachments

cc:

Frank Akers, Mayor of the City of Wood River

Michael J. Hoffman, P.E., Amec Foster Wheeler

Andrew Kirkman, Remediation Management Services Company, An affiliate of BP Products, NA Inc.

Andrew Vikman, Amec Foster Wheeler

Scott Ziegler, Remediation Management Services Company, An affiliate of BP Products, NA Inc.

Attachment 1

IEPA May 20, 2016, Correspondence

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 • (217) 782-2829

Bruce Rauner, Governor

Lisa Bonnett, Director

217/524-3300

May 20, 2016

Mr. Thomas G. Tunnicliff Environmental Business Manager BP Products North America Inc. 301 Evans Avenue P.O. Box 167 Wood River, Illinois 62095

Re: 1191155009--Madison County

BP Products North America Inc/Riverfront

ILD980503106

Log No. B-145R-CA-48

Received: November 12, 2013

RCRA Permit Permit CA

Dear Mr. Tunnicliff:

This is in response to the subject submittal dated November 7, 2013 and entitled, "Response to Condition 2, March 6, 2013 Illinois EPA Letter; and Condition 1, January 10, 2011 Illinois EPA Letter", prepared and submitted by you on behalf of the above-referenced facility. The subject submittal is provided in response to the Illinois EPA letters dated March 6, 2013 (Log No. B-145R-CA-15 and 17; regarding Parcel B), and January 10, 2011 (Log No. B-145R-CA-10; regarding the Former Channel Seep Area (FCSA)), and provides a: (1) demonstration the clay barrier within the FCSA recovery trench is effective at preventing migration of product into Parcel B; (2) request to cease activities associated with the western portion of the trench, which is located in Parcel B; and (3) request a No Further Action (NFA) letter for Parcel B perched groundwater by excluding the groundwater ingestion route in accordance with 35 Ill. Adm. Code 742.925. The subject submittal was reviewed as a request to modify the Corrective Action Program with regards to the Riverfront facility RCRA Part B Permit (Permit). Based on a technical review of the subject submittal, the submittal can be approved with the following conditions and modifications:

1. The Illinois EPA can approve the request to exclude the pathway for perched groundwater at Parcel B. The facility has demonstrated that the clay barrier is effective at preventing migration of FPH west of the barrier. As a result of this demonstration, the Illinois EPA can approve the following requests:

9511 Harrison St., Des Plaines, IL 6001 6 (847) 294-4000 412 SW Washington St., Suite D, Peoria, IL 61602 (309) 671-3022 2309 W. Main St., Suite 116, Marion, IL 62959 (618) 993-7200 100 W. Randolph, Suite 10-300, Chicago, IL 60601 (312) 814-6026

ANTIC RICHFIELD CO.

- a. Termination of pumping from the west side of the FCSA trench, which is composed of FCSA-RC-1 and FCSA trench sumps RTS-8 through RTS-14, all of which are located west of the clay barrier; and
- b. Termination of quarterly fluid level gauging from FCSA-RC-1 and FCSA trench sumps RTS-8 through RTS-14, as required by the January 10, 2011 Illinois EPA letter.
- 2. The facility must satisfy the restriction requirements for soils outlined in the October 22, 2009 letter (Log No. B-145-CA-69) within ninety (90) days of the date of this letter. With regards to groundwater restrictions, 35 Ill. Adm. Code 742.1015 sets forth the requirements for using ordinances as institutional controls to restrict groundwater usage in an area. Such an ordinance must effectively prohibit the installation and use of potable water supply wells.
- 3. Within ninety (90) days of the date of this letter, submit a workplan, for Illinois EPA review and approval, for investigation of the uppermost aquifer in the East Corridor of Parcel B.
- 4. While the facility may cease operation of the western portion of the trench within Parcel B, requirements of the January 10, 2011 Illinois EPA letter (Log No. B-145R-CA-10) remain with regards to Parcel C. This determination is based on the following:
 - a. The facility continues to detect product at wells FCSA-MW-03 and FCSA-MW-05.
 - b. The facility must still address soil and groundwater at Parcel C.
 - c. The facility must operate the east portion of the FCSA recovery trench, located at Parcel C, in accordance with the requirements found in the RCRA Permit and all previous Illinois EPA letters addressing the trench.
- 5. The uppermost aquifer groundwater monitoring at the LOD Area must continue in accordance with the requirements found in the RCRA Permit and all previous Illinois EPA letters addressing the LOD Area.
- 6. The facility remains subject to the monitoring and reporting requirements as defined in previous Illinois EPA letters, unless stated otherwise above. RCRA corrective action activities carried out at the facility including off-site activities as necessary, must meet the requirements of: (1) 35 Ill. Admin. Code 724.201; (2) the facility's Permit; and (3) Illinois EPA letters regarding such activities.

7. A completed RCRA Corrective Action Certification form must accompany all submittals made to the Illinois EPA regarding RCRA corrective action activities.

Work required by this letter, your modification requests or the regulations may also be subject to other laws governing professional services, such as the Illinois Professional Land Surveyor Act of 1989, the Professional Engineering Practice Act of 1989, the Professional Geologist Licensing Act, and the Structural Engineering Licensing Act of 1989. This letter does not relieve anyone from compliance with these laws and the regulations adopted pursuant to these laws. All work that falls within the scope and definitions of these laws must be performed in compliance with them. The Illinois EPA may refer any discovered violation of these laws to the appropriate regulating authority.

Should you have any questions regarding groundwater-related matters associated with this project, please contact Amy Boley at 217524-4716; questions regarding other aspects of this project should be directed to Jim Moore at 217/524-3295.

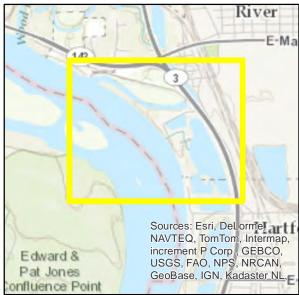
Sincerely,

Joyce L. Munie, P.E., Manager

Permit Section

Division of Land Pollution Control

Bureau of Land

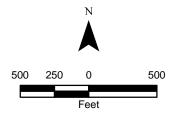

JLM:AMB:1191155009-RCRA-B145RCA48-Approval.docx

AND JKHOBA

Figures 1 and 2:

Figure 1: Land Reuse Parcels (Riverfront Property)
Figure 2: Parcel B and C Layout

Legend


Land Reuse Boundaries

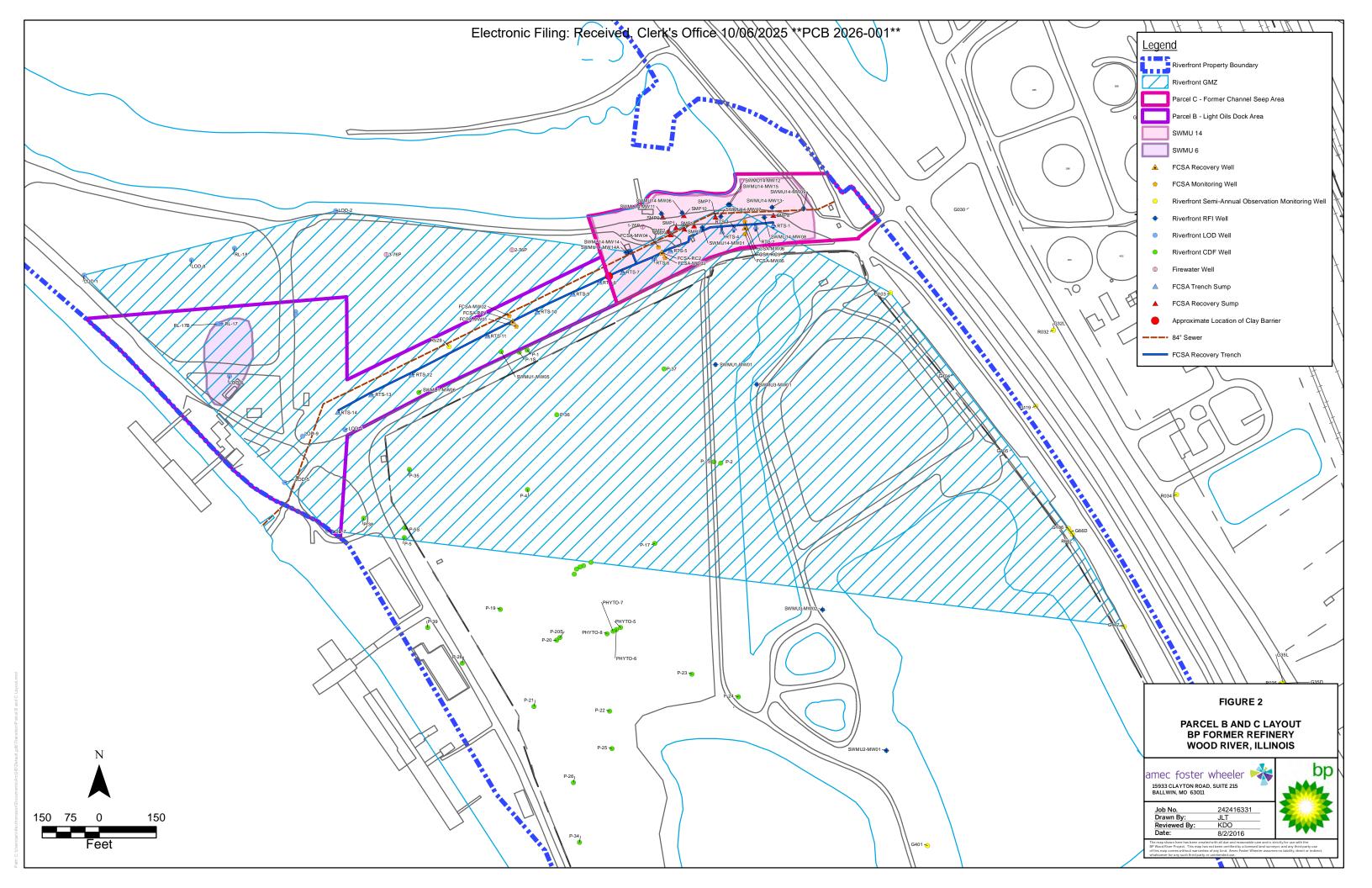
Parcel C

Note:

Parcel ID within parentheses, i.e. (B) = Parcel B

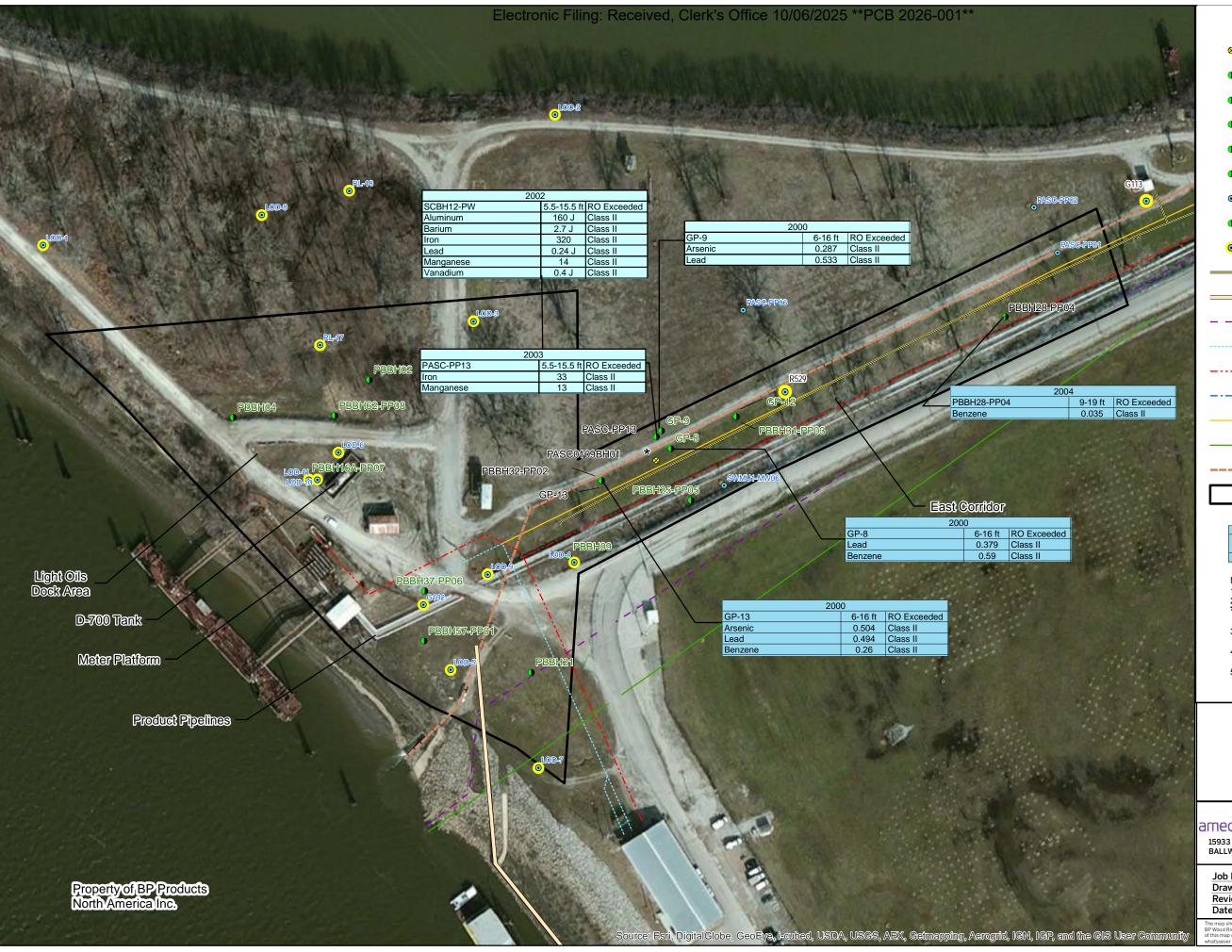
FIGURE 1

LAND REUSE PARCELS RIVERFRONT PROPERTY BP FORMER REFINERY WOOD RIVER, ILLINOIS



15933 CLAYTON ROAD, SUITE 215 BALLWIN, MO 63011

242416331
JLT
KDO
8/2/2016



The map shown here has been created with all due and reasonable care and is strictly for use with the BP Wood River Project. This map has not been certified by a licensed land surveyor, and any third party use of this map comes without warranties of any kind. Amee Foster Wheeler assumes no liability, direct or indirect, what soever for any such third rarry or uninfanced use

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001**
Attachment 3-1
Location of Parcel B East Corridor UMA Wells Relative to Soil and Perch Groundwater Impact Identified in the May 2006 URS Parcel B Land Reuse Investigation Report and Closure Plan

Legend

- Soil Boring
- Perched Water Piezometer
- Perched Water Piezometer
 - Perched Piezometer Location
- Perched Piezometer Location
- Perched Piezometer Location
- **Existing Monitoring Well**
- Perched Piezometer Location
- Uppermost Aquifer Well

Recovery Trench

Sheet Pile Wall

36" Sewer Pipe

4" Potable Water

---- 6" Fire Water Line

---- 6" Water Line

6" Water Line (City)

72" Sewer Pipe

---- 84" Sewer Pipe

	YEAR SAMPLEL)
	SCREENED	
LOCATION	INTERVAL	RO EXCEEDED
CHEMICAL	RESULT	CLASS II

- All analytical results are presented in mg/L.
 J Estmated concentration because the result was below the sample reporting limit or quality control

Light Oils Dock Area (Parcel B)

- criteria were not met.
 3. Soil boring PASC0109BH01 also identified as SCBBH01.
- Monitoring Well SCBH12-PW was redesignated as PASC-PP13 in 2003.
- 5. Orthophotograph taken on March 8-12, 2004.
- Source: Surdex Corporation.

PERCHED WATER EXCEEDING TIER 1 ROs FROM 2000 TO 2004 EAST CORRIDOR (PARCEL B) **BP RIVERFRONT PROPERTY** WOOD RIVER, ILLINOIS (REVISED MAY 2010)

15933 CLAYTON ROAD, SUITE 215

242416331
JLT
KDO
8/4/2016

Attachment 3-2

Groundwater Analytical Results UMA Wells LOD-4, R529, and G113 (SWMU14-MW14A) 2012 - 2016

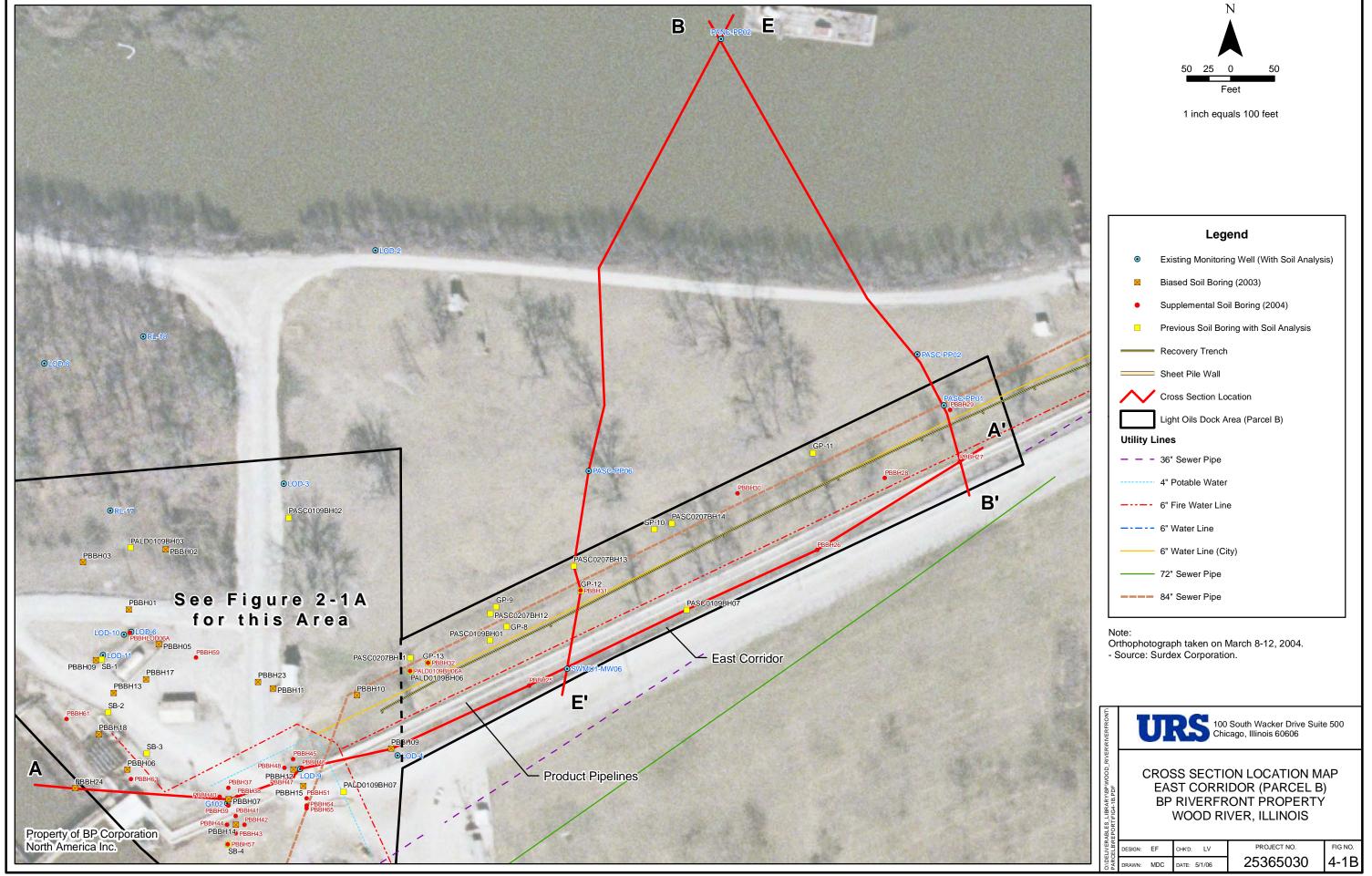
	P	arcel B (East Corridor) - UMA Well Ground	lwater Data (LOD	0-4, R529, G113)	- All Resul	ts		
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
G113	04/13/12	Arsenic		0.0152	MG/L	D	0.01	Yes
G113	04/13/12	Arsenic		0.0159	MG/L	T	0.01	Yes
G113	10/11/12	Arsenic		0.0161	MG/L	Т	0.01	Yes
G113	10/11/12	Arsenic		0.0156	MG/L	D	0.01	Yes
G113	04/15/13	Arsenic		0.0036	MG/L	Т	0.01	
G113	04/15/13	Arsenic		0.0036	MG/L	D	0.01	
G113	10/07/13	Arsenic	D9	0.0233	MG/L	D	0.01	Yes
G113	10/07/13	Arsenic		0.0215	MG/L	Т	0.01	Yes
G113	04/09/14	Arsenic		0.0147	MG/L	D	0.01	Yes
G113	04/09/14	Arsenic		0.0138	MG/L	Т	0.01	Yes
G113	10/21/14	Arsenic		0.013	MG/L	D	0.01	Yes
G113	10/21/14	Arsenic		0.0137	MG/L	Т	0.01	Yes
G113	04/10/15	Arsenic		0.0152	MG/L	Т	0.01	Yes
G113	04/10/15	Arsenic		0.0142	MG/L	D	0.01	Yes
G113	10/28/15	Arsenic	D9	0.011	MG/L	D	0.01	Yes
G113	10/28/15	Arsenic		0.0102	MG/L	Т	0.01	Yes
G113	05/10/16	Arsenic		0.008	MG/L	Т	0.01	
G113	05/10/16	Arsenic		0.0075	MG/L	D	0.01	
G113	04/13/12	Barium		0.545	MG/L	T	2	
G113	04/13/12	Barium		0.54	MG/L	D	2	
G113	10/11/12	Barium		0.539	MG/L	D	2	
G113	10/11/12	Barium	В	0.549	MG/L	T	2	
G113	04/15/13	Barium		0.528	MG/L	D	2	
G113	04/15/13	Barium		0.497	MG/L	T	2	
G113	10/07/13	Barium		0.457	MG/L	T	2	
G113	10/07/13	Barium	D9	0.154	MG/L	D	2	
G113	04/09/14	Barium		0.138	MG/L	T	2	
G113	04/09/14	Barium		0.145	MG/L	D	2	
G113	10/21/14	Barium		0.143	MG/L	T	2	
G113	10/21/14		D9	0.148	MG/L	D	2	
G113	04/10/15	Barium Barium	D9	0.131	MG/L	D	2	
				0.141		Т	2	
G113 G113	04/10/15 10/28/15	Barium Barium		0.13	MG/L MG/L	T	2	
G113	10/28/15		D9	0.106	MG/L	D	2	
		Barium	D9	0.107				
G113	05/10/16	Barium			MG/L	D	2	
G113	05/10/16	Barium		0.0901	MG/L	T	2	
G113	04/13/12	Benzene	J	0.00019	MG/L	T	0.005	
G113	10/11/12	Benzene	U	0.001	MG/L	T	0.005	
G113	04/15/13	Benzene	U	0.001	MG/L	N	0.005	
G113	10/07/13	Benzene	U	0.001	MG/L	N	0.005	
G113	04/09/14	Benzene	U	0.001	MG/L	N	0.005	
G113	10/21/14	Benzene	U	0.001	MG/L	N	0.005	ļ
G113	04/10/15	Benzene	U	0.001	MG/L	N	0.005	
G113	10/28/15	Benzene	J	0.00012	MG/L	N	0.005	1
G113	05/10/16	Benzene	U	0.001	MG/L	N	0.005	ļ
G113	04/13/12	Benzo(b)fluoranthene	U	0.0001	MG/L	Т	0.00018	
G113	10/11/12	Benzo(b)fluoranthene	U	0.0001	MG/L	Т	0.00018	
G113	04/15/13	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	

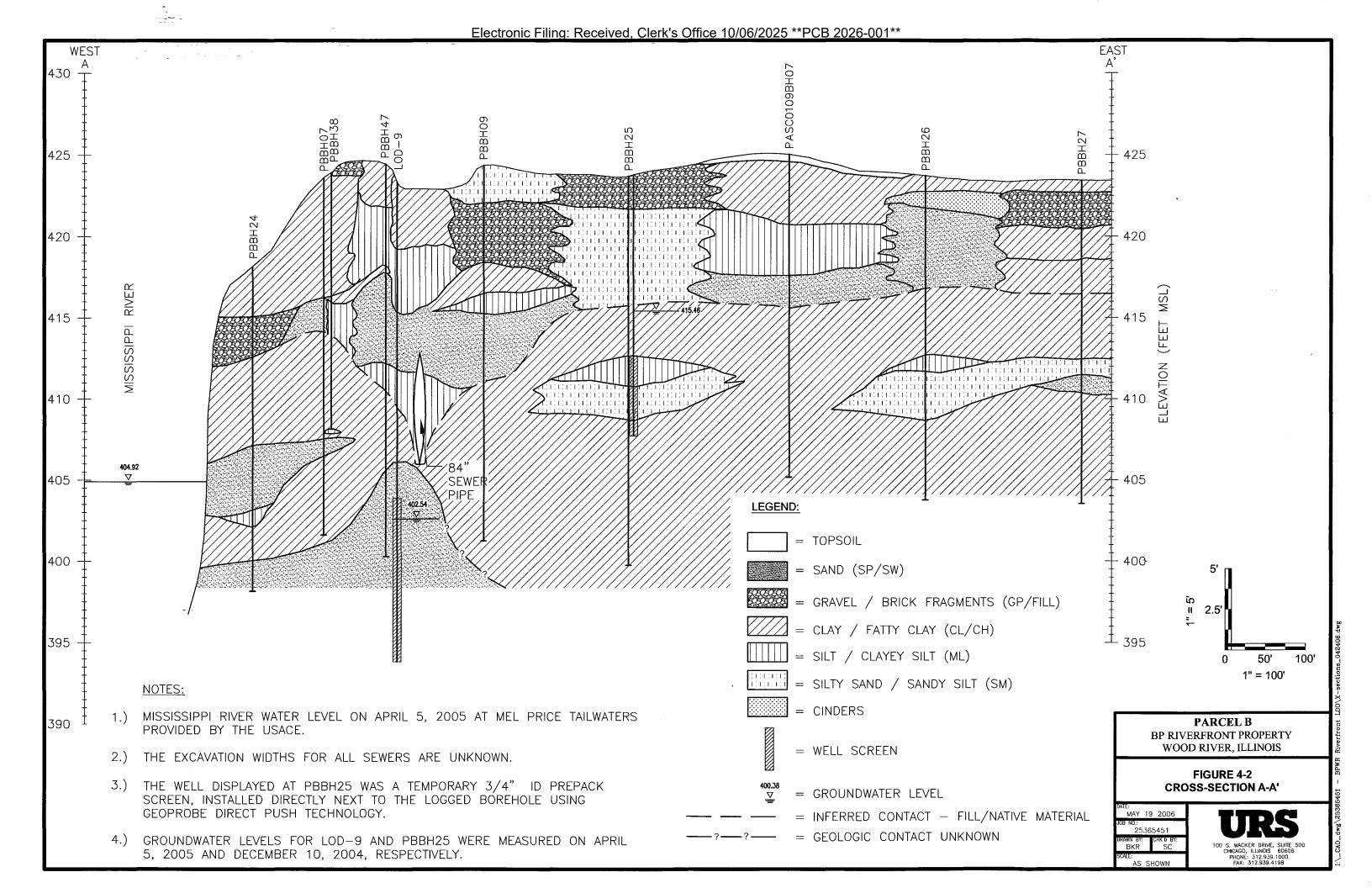
	P	arcel B (East Corridor) - UMA Well Ground	water Data (LO	D-4, R529, G113)	- All Resul	ts		
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
G113	10/07/13	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
G113	04/09/14	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
G113	10/21/14	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
G113	04/10/15	Benzo(b)fluoranthene	U,M5	0.0001	MG/L	N	0.00018	
G113	10/28/15	Benzo(b)fluoranthene	U	0.00011	MG/L	N	0.00018	
G113	05/10/16	Benzo(b)fluoranthene	U,1e	0.0001	MG/L	N	0.00018	
G113	04/13/12	Bis(2-Ethylhexyl)phthalate	U	0.005	MG/L	Т	0.006	
G113	10/11/12	Bis(2-Ethylhexyl)phthalate	U	0.005	MG/L	Т	0.006	
G113	04/15/13	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
G113	10/07/13	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
G113	04/09/14	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
G113	10/21/14	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
G113	04/10/15	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
G113	10/28/15	Bis(2-Ethylhexyl)phthalate	U	0.0106	MG/L	N	0.006	Yes
G113	05/10/16	Bis(2-Ethylhexyl)phthalate	U,1e	0.0103	MG/L	N	0.006	Yes
G113	04/13/12	Cadmium	U	0.0005	MG/L	D	0.005	163
G113	04/13/12	Cadmium	U	0.0005	MG/L	T	0.005	
G113	10/11/12	Cadmium	U	0.0005	MG/L	T	0.005	
G113	10/11/12	Cadmium	U	0.0005	MG/L	D	0.005	
G113 G113	04/15/13	Cadmium	U	0.0005	MG/L	T	0.005	
G113 G113	1		U	0.0005	MG/L	D	0.005	
G113 G113	04/15/13 10/07/13	Cadmium	U	0.0005	MG/L	D	0.005	
	1	Cadmium	U					
G113	10/07/13	Cadmium	U	0.0005	MG/L	T	0.005	
G113	04/09/14	Cadmium		0.0005	MG/L	D	0.005	
G113	04/09/14	Cadmium	U	0.0005	MG/L	T	0.005	
G113	10/21/14	Cadmium	U	0.0005	MG/L	D	0.005	
G113	10/21/14	Cadmium	U	0.0005	MG/L	T	0.005	
G113	04/10/15	Cadmium	U	0.0005	MG/L	T	0.005	
G113	04/10/15	Cadmium	U	0.0005	MG/L	D	0.005	
G113	10/28/15	Cadmium	U	0.0005	MG/L	D -	0.005	
G113	10/28/15	Cadmium	U	0.0005	MG/L	T –	0.005	
G113	05/10/16	Cadmium	U	0.0005	MG/L	T	0.005	
G113	05/10/16	Cadmium	U	0.0005	MG/L	D –	0.005	
G113	04/13/12	Carbon disulfide	U	0.005	MG/L	T	0.7	
G113	10/11/12	Carbon disulfide	U	0.005	MG/L	Т	0.7	
G113	04/15/13	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	10/07/13	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	04/09/14	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	10/21/14	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	04/10/15	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	10/28/15	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	05/10/16	Carbon disulfide	U	0.005	MG/L	N	0.7	
G113	04/13/12	Chrysene	U	0.0001	MG/L	Т	0.012	
G113	10/11/12	Chrysene	U	0.0001	MG/L	Т	0.012	
G113	04/15/13	Chrysene	U	0.0001	MG/L	N	0.012	
G113	10/07/13	Chrysene	U	0.0001	MG/L	N	0.012	
G113	04/09/14	Chrysene	U	0.0001	MG/L	N	0.012	
G113	10/21/14	Chrysene	U	0.0001	MG/L	N	0.012	

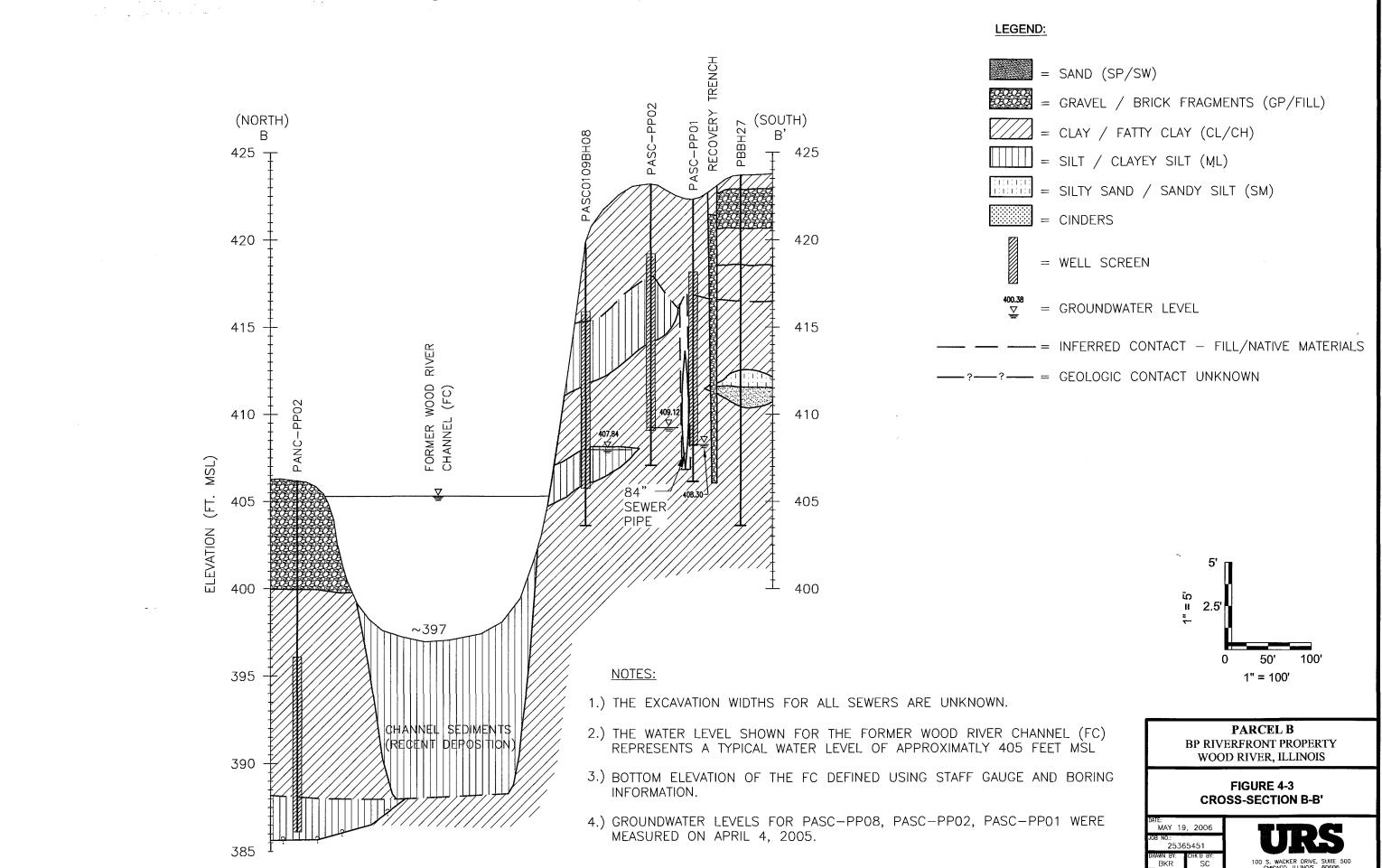
	P	arcel B (East Corridor) - UMA Well Groundwa	ater Data (LOI	0-4, R529, G113)	- All Resul	ts		
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
G113	04/10/15	Chrysene	U,M5	0.0001	MG/L	N	0.012	
G113	10/28/15	Chrysene	U	0.00011	MG/L	N	0.012	
G113	05/10/16	Chrysene	U,1e	0.0001	MG/L	N	0.012	
G113	04/13/12	Ethylbenzene	JB	0.001	MG/L	Т	0.7	
G113	10/11/12	Ethylbenzene	U	0.001	MG/L	Т	0.7	
G113	04/15/13	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	10/07/13	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	04/09/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	10/21/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	04/10/15	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	10/28/15	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	05/10/16	Ethylbenzene	U	0.001	MG/L	N	0.7	
G113	04/13/12	Lead	J	0.00015	MG/L	Т	0.0075	
G113	04/13/12	Lead	U	0.001	MG/L	D	0.0075	
G113	10/11/12	Lead	U	0.001	MG/L	D	0.0075	
G113	10/11/12	Lead	U	0.001	MG/L	Т	0.0075	
G113	04/15/13	Lead	U	0.001	MG/L	Т	0.0075	
G113	04/15/13	Lead	U	0.001	MG/L	D	0.0075	
G113	10/07/13	Lead	J	0.00031	MG/L	Т	0.0075	
G113	10/07/13	Lead	U	0.001	MG/L	D	0.0075	
G113	04/09/14	Lead	U	0.001	MG/L	Т	0.0075	
G113	04/09/14	Lead	U	0.001	MG/L	D	0.0075	
G113	10/21/14	Lead	U	0.001	MG/L	T	0.0075	
G113	10/21/14	Lead	U	0.001	MG/L	D	0.0075	
G113	04/10/15	Lead	U	0.001	MG/L	D	0.0075	
G113	04/10/15	Lead	U	0.001	MG/L	Т	0.0075	
G113	10/28/15	Lead	J	0.00029	MG/L	T	0.0075	
G113	10/28/15	Lead	U	0.001	MG/L	D	0.0075	
G113	05/10/16	Lead	U	0.001	MG/L	D	0.0075	
G113	05/10/16	Lead	J,B	0.00034	MG/L	T	0.0075	
G113	04/13/12	Methyl Tertbutyl Ether	3,0	0.0169	MG/L	T	0.0073	
G113	10/11/12	Methyl Tertbutyl Ether		0.0202	MG/L	T	0.07	
G113	04/15/13	Methyl Tertbutyl Ether		0.0082	MG/L	N N	0.07	
G113	10/07/13	Methyl Tertbutyl Ether	J	0.0009	MG/L	N	0.07	
G113	04/09/14	Methyl Tertbutyl Ether		0.003	MG/L	N	0.07	
G113	10/21/14	Methyl Tertbutyl Ether		0.0042	MG/L	N	0.07	
G113	04/10/15	Methyl Tertbutyl Ether		0.0042	MG/L	N	0.07	
G113	10/28/15	Methyl Tertbutyl Ether		0.0081	MG/L	N	0.07	
		·						
G113	05/10/16	Methyl Tertbutyl Ether	J JB	0.00094	MG/L	N T	0.07	-
G113	04/13/12	Toluene		0.001	MG/L		1	
G113	10/11/12	Toluene	U	0.001	MG/L	T	1	
G113	04/15/13	Toluene	U	0.001	MG/L	N	1	
G113	10/07/13	Toluene	J	0.00031	MG/L	N	1	-
G113	04/09/14	Toluene	U	0.001	MG/L	N	1	-
G113	10/21/14	Toluene	U	0.001	MG/L	N	1	
G113	04/10/15	Toluene	U	0.001	MG/L	N	1	
G113	10/28/15	Toluene	U	0.001	MG/L	N	1	
G113	05/10/16	Toluene	U	0.001	MG/L	N	1	

	Р	arcel B (East Corridor) - UMA Well Ground	lwater Data (LOI)-4, R529, G113)	- All Resul	ts		
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
G113	04/13/12	Xylenes, Total	U	0.003	MG/L	Т	10	
G113	10/11/12	Xylenes, Total	U	0.003	MG/L	Т	10	
G113	04/15/13	Xylenes, Total	U	0.003	MG/L	N	10	
G113	10/07/13	Xylenes, Total	U	0.003	MG/L	N	10	
G113	04/09/14	Xylenes, Total	U	0.003	MG/L	N	10	
G113	10/21/14	Xylenes, Total	U	0.003	MG/L	N	10	
G113	04/10/15	Xylenes, Total	U	0.003	MG/L	N	10	
G113	10/28/15	Xylenes, Total	U	0.003	MG/L	N	10	
G113	05/10/16	Xylenes, Total	U	0.003	MG/L	N	10	
LOD-4	04/27/12	Arsenic		0.0014	MG/L	Т	0.01	
LOD-4	04/27/12	Arsenic	J	0.00094	MG/L	D	0.01	
LOD-4	10/23/12	Arsenic	J	0.00064	MG/L	Т	0.01	
LOD-4	10/23/12	Arsenic	J	0.00057	MG/L	D	0.01	
LOD-4	04/23/14	Arsenic	J	0.00049	MG/L	D	0.01	
LOD-4	04/23/14	Arsenic	U	0.001	MG/L	Т	0.01	
LOD-4	11/05/14	Arsenic	J	0.00064	MG/L	Т	0.01	
LOD-4	11/05/14	Arsenic	J	0.00068	MG/L	D	0.01	
LOD-4	04/27/12	Benzene	U	0.001	MG/L	T	0.005	
LOD-4	10/23/12	Benzene	J	0.00011	MG/L	Т	0.005	
LOD-4	04/23/14	Benzene	U	0.001	MG/L	N N	0.005	
LOD-4	11/05/14	Benzene	J	0.00058	MG/L	N	0.005	
LOD-4	04/27/12	Ethylbenzene	U	0.001	MG/L	Т	0.7	
LOD-4	10/23/12	Ethylbenzene	U	0.001	MG/L	T	0.7	
LOD-4	04/23/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
LOD-4	11/05/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
LOD-4	04/27/12	Lead	JB	0.001	MG/L	D	0.0075	
LOD-4	04/27/12	Lead	JB	0.001	MG/L	T	0.0075	
LOD-4	10/23/12	Lead	JB	0.0001	MG/L	D	0.0075	
LOD-4	10/23/12	Lead	U	0.001	MG/L	T	0.0075	
LOD-4	04/23/14	Lead	U	0.001	MG/L	T	0.0075	
LOD-4	04/23/14	Lead	U	0.001	MG/L	D	0.0075	
LOD-4	11/05/14	Lead	U	0.001	MG/L	T	0.0075	
LOD-4	11/05/14	Lead	U	0.001	MG/L	D	0.0075	
LOD-4	04/27/12	Methyl Tertbutyl Ether		0.0052	MG/L	T	0.0073	
LOD-4	10/23/12	Methyl Tertbutyl Ether		0.0032	MG/L	T	0.07	
LOD-4	04/23/14	Methyl Tertbutyl Ether		0.0022	MG/L	N	0.07	
LOD-4	11/05/14	Methyl Tertbutyl Ether		0.001	MG/L	N	0.07	
LOD-4	04/27/12	· · · · · ·	U	0.0014	MG/L	T		
LOD-4	10/23/12	Toluene Toluene	U	0.001	MG/L	T	1	
LOD-4	04/23/14		U	0.001	MG/L		1	
LOD-4		Toluene	U	0.001	MG/L	N N	1	1
	11/05/14	Toluene Vylenes Total	U			N T	10	1
LOD-4	04/27/12	Xylenes, Total		0.003	MG/L	T	10	
LOD-4	10/23/12	Xylenes, Total	U	0.003	MG/L	T	10	-
LOD-4	04/23/14	Xylenes, Total	U	0.003	MG/L	N	10	-
LOD-4	11/05/14	Xylenes, Total	U	0.003	MG/L	N	10	
R529	04/13/12	Arsenic		0.0042	MG/L	D	0.01	1
R529	04/13/12	Arsenic		0.0042	MG/L	T	0.01	-
R529	04/13/12	Arsenic		0.0041	MG/L	D	0.01	

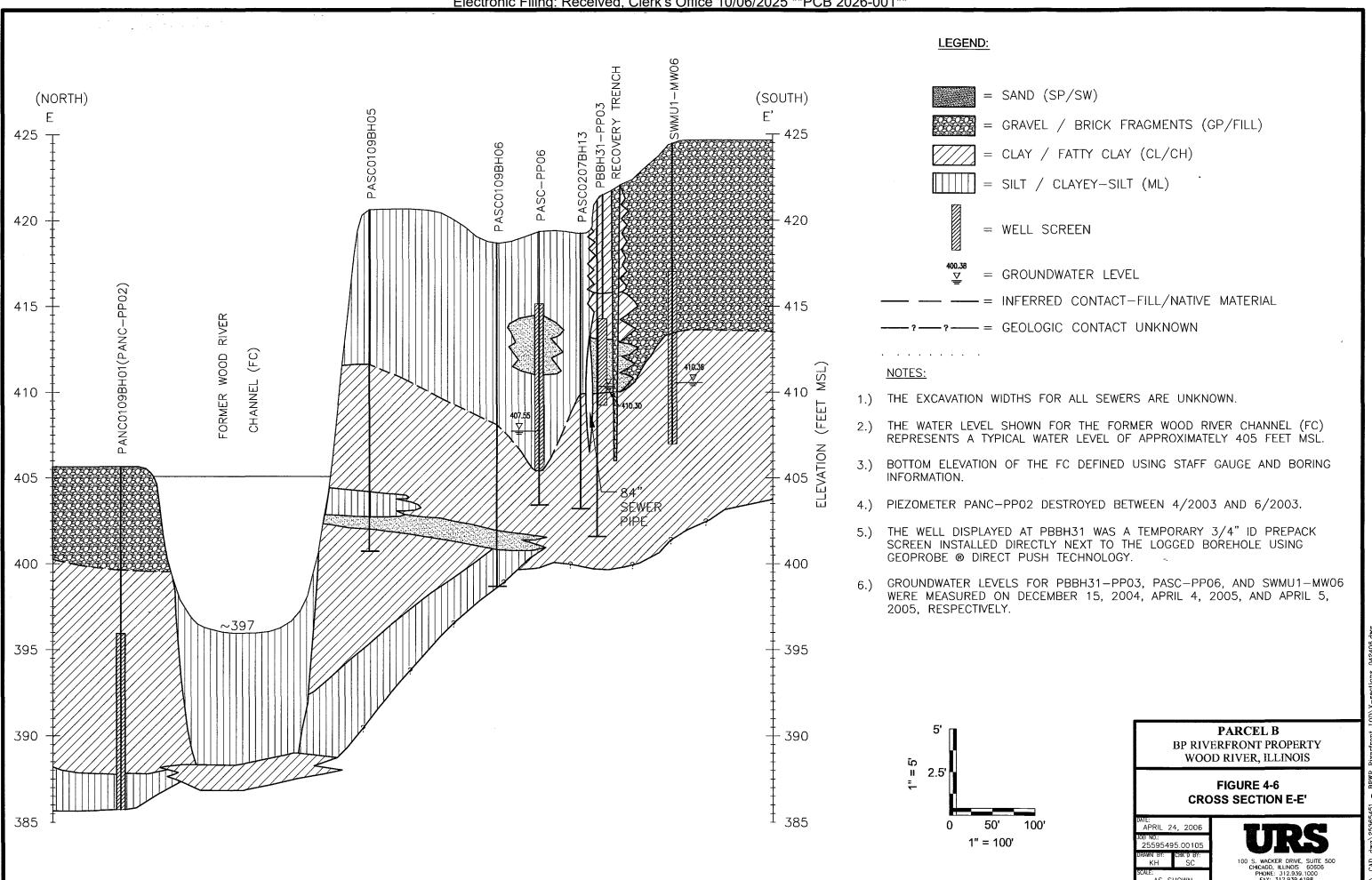
Parcel B (East Corridor) - UMA Well Groundwater Data (LOD-4, R529, G113) - All Results								
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
R529	04/13/12	Arsenic		0.0041	MG/L	Т	0.01	
R529	10/10/12	Arsenic		0.0048	MG/L	T	0.01	
R529	10/10/12	Arsenic		0.0045	MG/L	D	0.01	
R529	10/10/12	Arsenic		0.0046	MG/L	T	0.01	
R529	10/10/12	Arsenic		0.0044	MG/L	D	0.01	
R529	04/15/13	Arsenic		0.004	MG/L	D	0.01	
R529	04/15/13	Arsenic		0.0039	MG/L	Т	0.01	
R529	10/08/13	Arsenic		0.0037	MG/L	D	0.01	
R529	10/08/13	Arsenic		0.004	MG/L	Т	0.01	
R529	04/14/14	Arsenic	D9	0.0047	MG/L	D	0.01	
R529	04/14/14	Arsenic		0.0044	MG/L	Т	0.01	
R529	10/16/14	Arsenic		0.0046	MG/L	Т	0.01	
R529	10/16/14	Arsenic		0.0042	MG/L	D	0.01	
R529	04/06/15	Arsenic		0.0048	MG/L	Т	0.01	
R529	04/06/15	Arsenic	D9	0.0049	MG/L	D	0.01	
R529	10/26/15	Arsenic		0.0072	MG/L	Т	0.01	
R529	10/26/15	Arsenic		0.0072	MG/L	D	0.01	
R529	05/11/16	Arsenic	D9	0.0043	MG/L	D	0.01	
R529	05/11/16	Arsenic		0.0041	MG/L	Т	0.01	
R529	04/13/12	Barium		0.567	MG/L	Т	2	
R529	04/13/12	Barium		0.562	MG/L	Т	2	
R529	04/13/12	Barium		0.539	MG/L	D	2	
R529	04/13/12	Barium		0.549	MG/L	D	2	
R529	10/10/12	Barium		0.577	MG/L	D	2	
R529	10/10/12	Barium	В	0.598	MG/L	Т	2	
R529	10/10/12	Barium		0.6	MG/L	D	2	
R529	10/10/12	Barium	В	0.605	MG/L	Т	2	
R529	04/15/13	Barium		0.547	MG/L	Т	2	
R529	04/15/13	Barium		0.564	MG/L	D	2	
R529	10/08/13	Barium		0.65	MG/L	Т	2	
R529	10/08/13	Barium		0.635	MG/L	D	2	
R529	04/14/14	Barium		0.846	MG/L	Т	2	
R529	04/14/14	Barium		0.74	MG/L	D	2	
R529	10/16/14	Barium		0.593	MG/L	D	2	
R529	10/16/14	Barium		0.601	MG/L	Т	2	
R529	04/06/15	Barium	D9	0.64	MG/L	D	2	
R529	04/06/15	Barium		0.61	MG/L	Т	2	
R529	10/26/15	Barium	D9	0.217	MG/L	D	2	
R529	10/26/15	Barium		0.198	MG/L	Т	2	
R529	05/11/16	Barium		0.224	MG/L	Т	2	
R529	05/11/16	Barium	D9	0.228	MG/L	D	2	
R529	04/13/12	Benzene	J	0.00014	MG/L	Т	0.005	
R529	04/13/12	Benzene	U	0.001	MG/L	Т	0.005	
R529	10/10/12	Benzene	U	0.001	MG/L	Т	0.005	
R529	10/10/12	Benzene	U	0.001	MG/L	Т	0.005	
R529	04/15/13	Benzene	U	0.001	MG/L	N	0.005	
R529	10/08/13	Benzene		0.0246	MG/L	N	0.005	Yes
R529	04/14/14	Benzene		0.0012	MG/L	N	0.005	

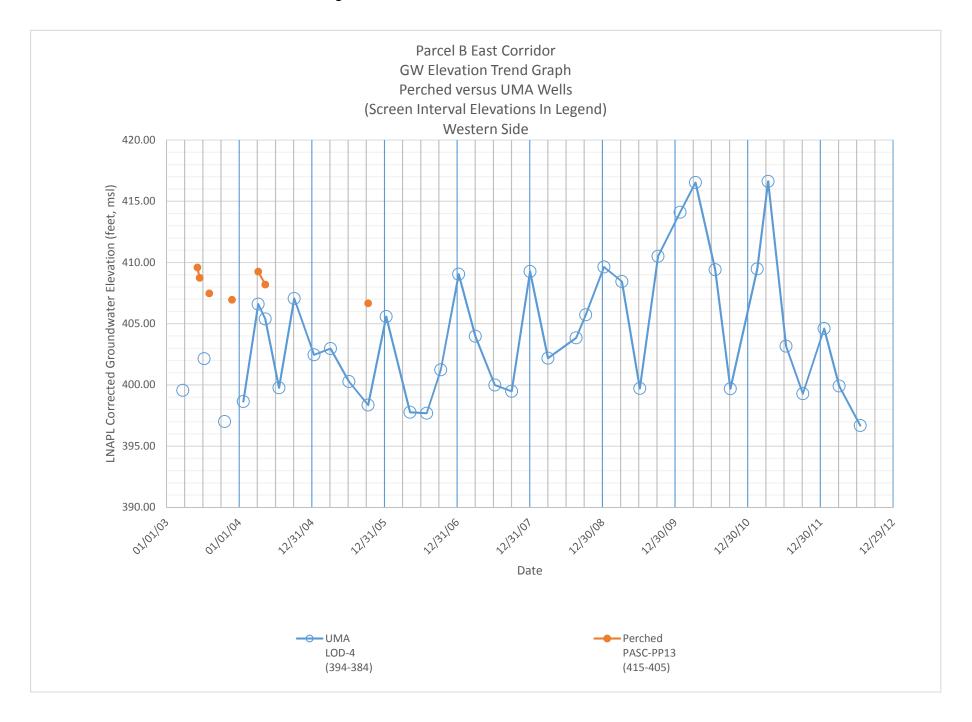

Parcel B (East Corridor) - UMA Well Groundwater Data (LOD-4, R529, G113) - All Results								
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
R529	10/16/14	Benzene	U	0.001	MG/L	N	0.005	
R529	04/06/15	Benzene	U	0.001	MG/L	N	0.005	
R529	10/26/15	Benzene	J	0.00014	MG/L	N	0.005	
R529	05/11/16	Benzene	U	0.001	MG/L	N	0.005	
R529	04/13/12	Benzo(b)fluoranthene	U	0.0001	MG/L	Т	0.00018	
R529	04/13/12	Benzo(b)fluoranthene	U	0.0001	MG/L	Т	0.00018	
R529	10/10/12	Benzo(b)fluoranthene	U	0.0001	MG/L	Т	0.00018	
R529	10/10/12	Benzo(b)fluoranthene	U	0.00011	MG/L	Т	0.00018	
R529	04/15/13	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	10/08/13	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	04/14/14	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	10/16/14	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	04/06/15	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	10/26/15	Benzo(b)fluoranthene	J	0.000018	MG/L	N	0.00018	
R529	05/11/16	Benzo(b)fluoranthene	U	0.0001	MG/L	N	0.00018	
R529	04/13/12	Bis(2-Ethylhexyl)phthalate	U	0.005	MG/L	Т	0.006	
R529	04/13/12	Bis(2-Ethylhexyl)phthalate	U	0.005	MG/L	Т	0.006	
R529	10/10/12	Bis(2-Ethylhexyl)phthalate	U	0.005	MG/L	Т	0.006	
R529	10/10/12	Bis(2-Ethylhexyl)phthalate	U	0.0054	MG/L	Т	0.006	
R529	04/15/13	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
R529	10/08/13	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
R529	04/14/14	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
R529	10/16/14	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
R529	04/06/15	Bis(2-Ethylhexyl)phthalate	U	0.01	MG/L	N	0.006	Yes
R529	10/26/15	Bis(2-Ethylhexyl)phthalate	J	0.0085	MG/L	N	0.006	Yes
R529	05/11/16	Bis(2-Ethylhexyl)phthalate	j	0.0024	MG/L	N	0.006	
R529	04/13/12	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/13/12	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/13/12	Cadmium	U	0.0005	MG/L	T	0.005	
R529	04/13/12	Cadmium	U	0.0005	MG/L	Т	0.005	
R529	10/10/12	Cadmium	U	0.0005	MG/L	T	0.005	
R529	10/10/12	Cadmium	U	0.0005	MG/L	D	0.005	
R529	10/10/12	Cadmium	U	0.0005	MG/L	T	0.005	
R529	10/10/12	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/15/13	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/15/13	Cadmium	U	0.0005	MG/L	T	0.005	
R529	10/08/13	Cadmium	U	0.0005	MG/L	D	0.005	
R529	10/08/13	Cadmium	U	0.0005	MG/L	T	0.005	
R529	04/14/14	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/14/14	Cadmium	U	0.0005	MG/L	T	0.005	
R529	10/16/14	Cadmium	U	0.0005	MG/L	T	0.005	
R529	10/16/14	Cadmium	U	0.0005	MG/L	D	0.005	
R529	04/06/15	Cadmium	U	0.0005	MG/L	Т	0.005	
R529	04/06/15	Cadmium	U	0.0005	MG/L	D	0.005	
R529			U		MG/L	T	0.005	
	10/26/15	Cadmium		0.0005				
R529	10/26/15	Cadmium	J	0.00011	MG/L	D	0.005	
R529 R529	05/11/16 05/11/16	Cadmium	U	0.0005	MG/L MG/L	D T	0.005 0.005	

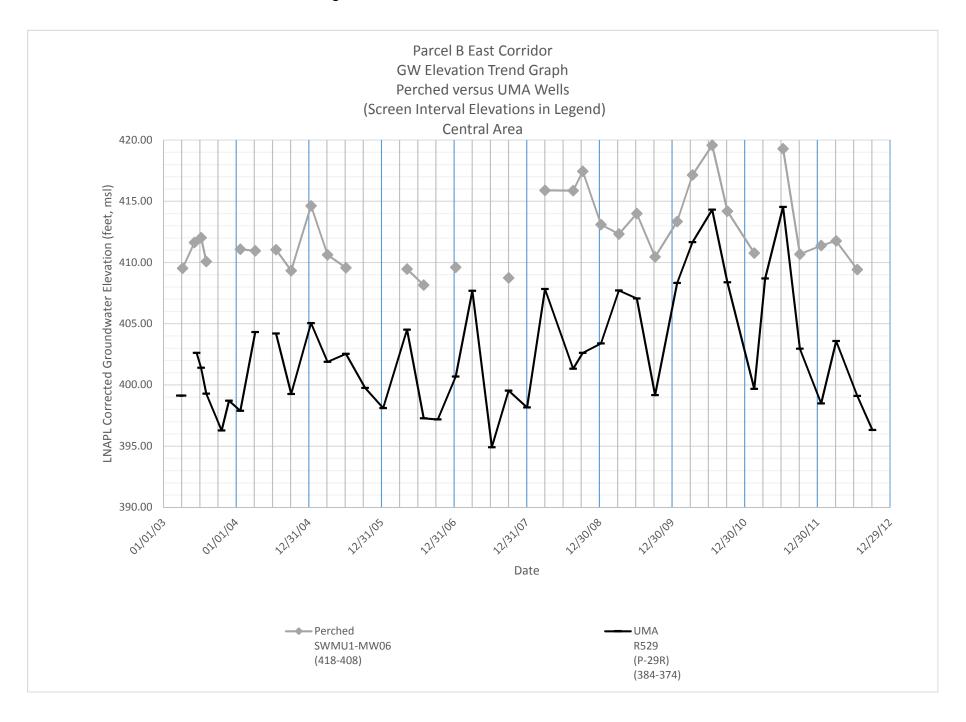

Parcel B (East Corridor) - UMA Well Groundwater Data (LOD-4, R529, G113) - All Results								
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
R529	04/13/12	Carbon disulfide	U	0.005	MG/L	Т	0.7	
R529	04/13/12	Carbon disulfide	U	0.005	MG/L	T	0.7	
R529	10/10/12	Carbon disulfide	U	0.005	MG/L	T	0.7	
R529	10/10/12	Carbon disulfide	U	0.005	MG/L	Т	0.7	
R529	04/15/13	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	10/08/13	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	04/14/14	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	10/16/14	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	04/06/15	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	10/26/15	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	05/11/16	Carbon disulfide	U	0.005	MG/L	N	0.7	
R529	04/13/12	Chrysene	U	0.0001	MG/L	Т	0.012	
R529	04/13/12	Chrysene	U	0.0001	MG/L	Т	0.012	
R529	10/10/12	Chrysene	U	0.00011	MG/L	Т	0.012	
R529	10/10/12	Chrysene	U	0.0001	MG/L	Т	0.012	
R529	04/15/13	Chrysene	U	0.0001	MG/L	N	0.012	
R529	10/08/13	Chrysene	U	0.0001	MG/L	N	0.012	
R529	04/14/14	Chrysene	U	0.0001	MG/L	N	0.012	
R529	10/16/14	Chrysene	U	0.0001	MG/L	N	0.012	
R529	04/06/15	Chrysene	U	0.0001	MG/L	N	0.012	
R529	10/26/15	Chrysene	J,B	0.0001	MG/L	N	0.012	
R529	05/11/16	Chrysene	U	0.0001	MG/L	N	0.012	
R529	04/13/12	Ethylbenzene	J	0.0001	MG/L	T	0.012	
R529	04/13/12	Ethylbenzene	JB	0.001	MG/L	T	0.7	
R529		· ·	U			T	0.7	
-	10/10/12	Ethylbenzene	U	0.001	MG/L			
R529	10/10/12	Ethylbenzene		0.001	MG/L	T	0.7	
R529	04/15/13	Ethylbenzene	U	0.001	MG/L	N	0.7	
R529	10/08/13	Ethylbenzene	J	0.00039	MG/L	N	0.7	
R529	04/14/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
R529	10/16/14	Ethylbenzene	U	0.001	MG/L	N	0.7	
R529	04/06/15	Ethylbenzene	U	0.001	MG/L	N	0.7	
R529	10/26/15	Ethylbenzene	U	0.001	MG/L	N	0.7	
R529	05/11/16	Ethylbenzene 	U	0.001	MG/L	N –	0.7	
R529	04/13/12	Lead	J	0.000077	MG/L	T	0.0075	
R529	04/13/12	Lead	U	0.001	MG/L	D	0.0075	
R529	04/13/12	Lead	J	0.000087	MG/L	Т	0.0075	
R529	04/13/12	Lead	U	0.001	MG/L	D	0.0075	
R529	10/10/12	Lead	U	0.001	MG/L	D	0.0075	
R529	10/10/12	Lead	U	0.001	MG/L	Т	0.0075	
R529	10/10/12	Lead	U	0.001	MG/L	D	0.0075	
R529	10/10/12	Lead	U	0.001	MG/L	Т	0.0075	
R529	04/15/13	Lead	J	0.00066	MG/L	Т	0.0075	
R529	04/15/13	Lead	J	0.000043	MG/L	D	0.0075	
R529	10/08/13	Lead	J	0.000041	MG/L	Т	0.0075	
R529	10/08/13	Lead	U	0.001	MG/L	D	0.0075	
R529	04/14/14	Lead	U	0.001	MG/L	Т	0.0075	
R529	04/14/14	Lead	U	0.001	MG/L	D	0.0075	
R529	10/16/14	Lead	U	0.001	MG/L	D	0.0075	

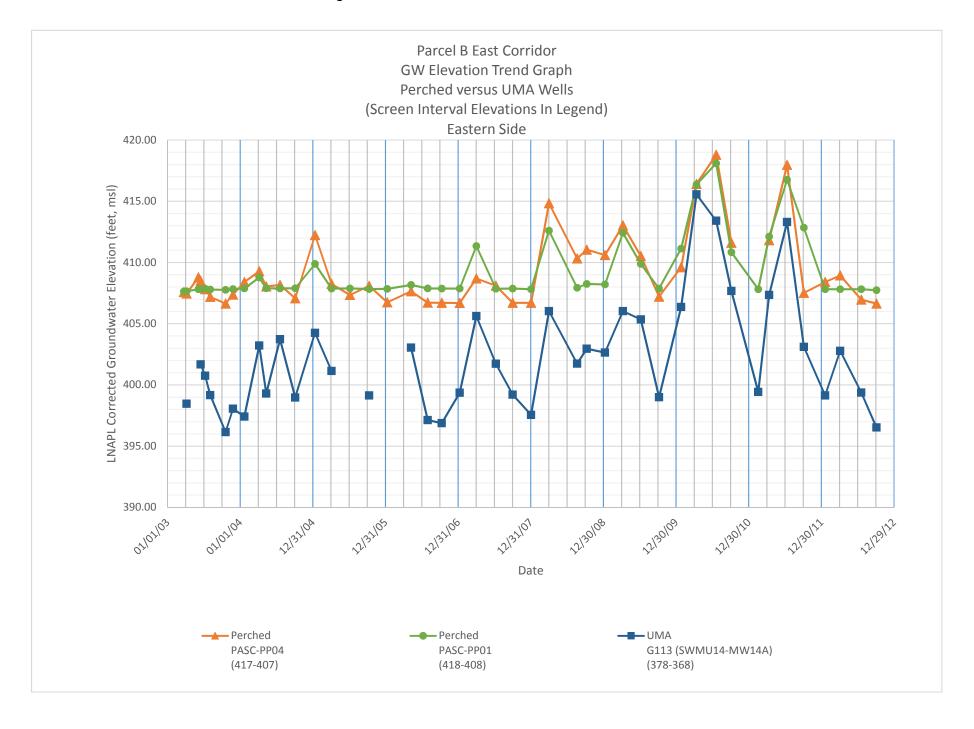

Parcel B (East Corridor) - UMA Well Groundwater Data (LOD-4, R529, G113) - All Results								
Location	Date	Parameter	Flag	Result	Units	Fraction	GQS	Result >GQS
R529	10/16/14	Lead	U	0.001	MG/L	Т	0.0075	
R529	04/06/15	Lead	U	0.001	MG/L	D	0.0075	
R529	04/06/15	Lead	U	0.001	MG/L	Т	0.0075	
R529	10/26/15	Lead	U	0.001	MG/L	D	0.0075	
R529	10/26/15	Lead	J,B	0.00058	MG/L	Т	0.0075	
R529	05/11/16	Lead	J	0.00024	MG/L	Т	0.0075	
R529	05/11/16	Lead	U	0.001	MG/L	D	0.0075	
R529	04/13/12	Methyl Tertbutyl Ether		0.0186	MG/L	Т	0.07	
R529	04/13/12	Methyl Tertbutyl Ether		0.0206	MG/L	Т	0.07	
R529	10/10/12	Methyl Tertbutyl Ether		0.0136	MG/L	Т	0.07	
R529	10/10/12	Methyl Tertbutyl Ether		0.0136	MG/L	Т	0.07	
R529	04/15/13	Methyl Tertbutyl Ether		0.0098	MG/L	N	0.07	
R529	10/08/13	Methyl Tertbutyl Ether		0.008	MG/L	N	0.07	
R529	04/14/14	Methyl Tertbutyl Ether		0.0155	MG/L	N	0.07	
R529	10/16/14	Methyl Tertbutyl Ether		0.0073	MG/L	N	0.07	
R529	04/06/15	Methyl Tertbutyl Ether		0.0136	MG/L	N	0.07	
R529	10/26/15	Methyl Tertbutyl Ether		0.0039	MG/L	N	0.07	
R529	05/11/16	Methyl Tertbutyl Ether		0.0052	MG/L	N	0.07	
R529	04/13/12	Toluene	JB	0.001	MG/L	Т	1	
R529	04/13/12	Toluene	J	0.001	MG/L	Т	1	
R529	10/10/12	Toluene	U	0.001	MG/L	Т	1	
R529	10/10/12	Toluene	U	0.001	MG/L	Т	1	
R529	04/15/13	Toluene	U	0.001	MG/L	N	1	
R529	10/08/13	Toluene		0.0025	MG/L	N	1	
R529	04/14/14	Toluene	J	0.00037	MG/L	N	1	
R529	10/16/14	Toluene	U	0.001	MG/L	N	1	
R529	04/06/15	Toluene	U	0.001	MG/L	N	1	
R529	10/26/15	Toluene	J	0.00024	MG/L	N	1	
R529	05/11/16	Toluene	J	0.00026	MG/L	N	1	
R529	04/13/12	Xylenes, Total	U	0.003	MG/L	Т	10	
R529	04/13/12	Xylenes, Total	U	0.003	MG/L	T	10	
R529	10/10/12	Xylenes, Total	U	0.003	MG/L	T	10	
R529	10/10/12	Xylenes, Total	U	0.003	MG/L	T	10	
R529	04/15/13	Xylenes, Total	U	0.003	MG/L	N	10	
R529	10/08/13	Xylenes, Total		0.003	MG/L	N	10	
R529	04/14/14	Xylenes, Total	U	0.0043	MG/L	N	10	
R529	10/16/14	Xylenes, Total	U	0.003	MG/L	N	10	
R529	04/06/15	Xylenes, Total	U	0.003	MG/L	N	10	
R529	10/26/15	Xylenes, Total	U					
		<u>'</u>		0.003	MG/L	N	10	
R529	05/11/16	Xylenes, Total	U	0.003	MG/L	N	10	

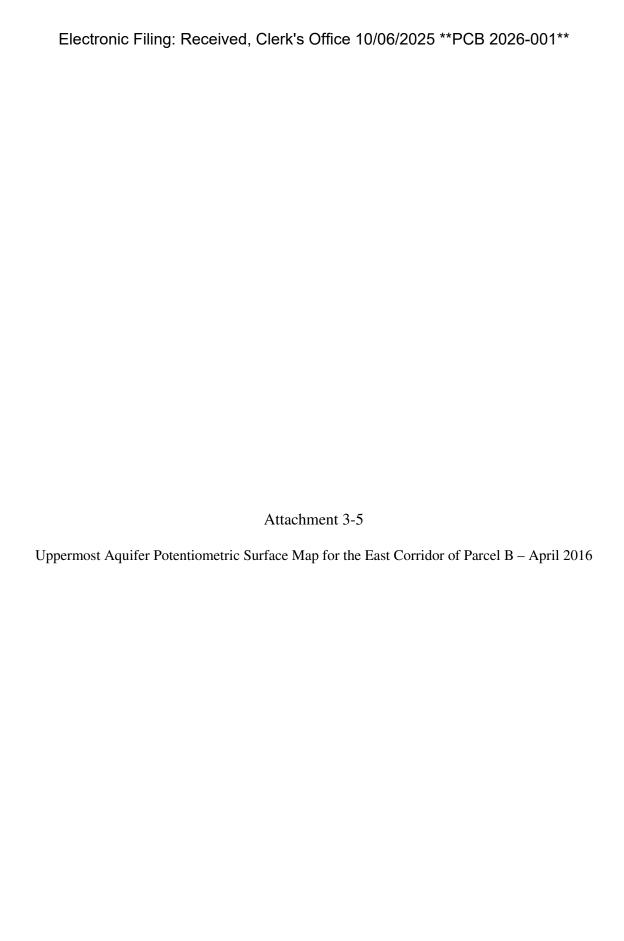
Attachment 3-3

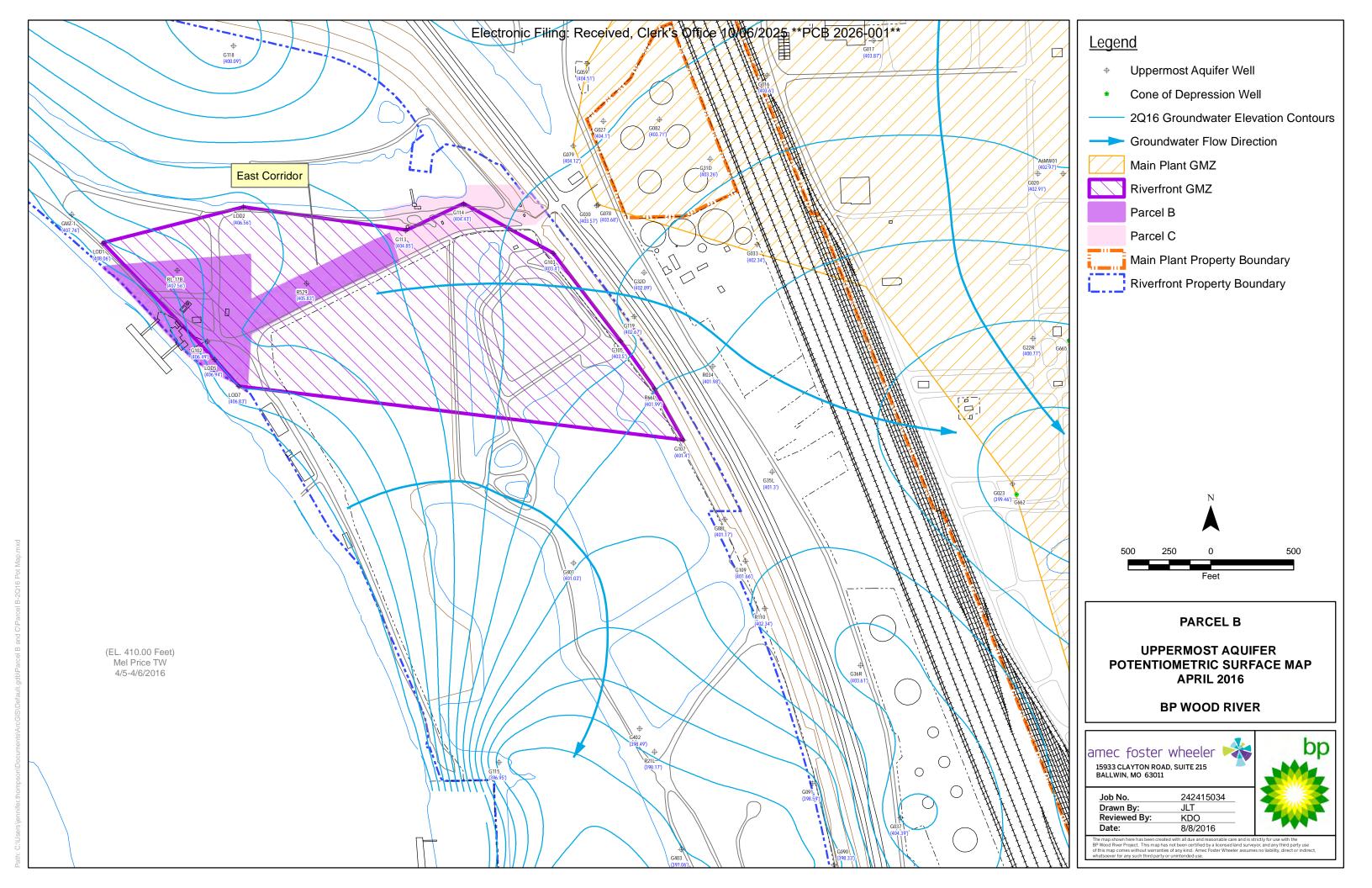

Hydrogeologic Cross Sections for the East Corridor of Parcel B


D_dwg\25365451 - BPWR Riverfront LOD\X-sections_042408.dr




Attachment 3-4


Comparison of Fluid Levels in Select Perched Wells and UMA wells in Parcel B East Corridor


(Western Side: Perched Well PASC-PP13 and UMA Well LOD-4) (Central Area: Perched Well SWMU1-MW06 and UMA Well R529) (Eastern Side: Perched Wells PASC-PP01 and PASC-PP04, and UMA Well G113)

Attachment 4-1

IEPA January 10, 2011, Correspondence

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 ◆ (217) 782-2829 James R. Thompson Center, 100 West Randolph, Suite 11-300, Chicago, IL 60601 ◆ (312) 814-6026

PAT QUINN, GOVERNOR

Douglas P. Scott, Director

217/524-3300

JAN 1 0 2011

7009 3410 0002 3808 4180

Mr. Thomas G. Tunnicliff Environmental Business Manager BP Products North America Inc. 301 Evans Avenue P. O. Box 167 Wood River, Illinois 62095

Re: 1191155009 -- Madison County

BP Products North America (aka Riverfront Property)

ILD980503106

Log No. B-145R-CA-10

Date Received: November 30, 2009

RCRA Permit Permit CA

Dear Mr. Tunnicliff:

This is in response to a document dated November 30, 2009, entitled, "Response to Conditional Approval of the Improvements to the FCSA Interim Measures" prepared and submitted on behalf of BP by Mr. Ryan P. Hartley, P.E., and Mr. Timothy Dull, P.E. of URS. The purpose of the submittal was to respond to the Illinois EPA's October 2, 2009 letter (Log No. 145-CA-73) which approved, with certain conditions/comments requiring additional documentation, the interim measures being performed at the Former Channel Seep Area (FCSA), one of the area being addressed by the RCRA corrective action program at the above-referenced facility; the FCSA is also referred to as Parcel C in this program.

The overall investigation/remediation effort at this facility is being carried out in accordance with Section V and VII of the RCRA post-closure permit issued to the above-referenced facility (Log No. B-145R and associated modifications). Several interim measures have already been implemented at the FCSA to address free phase hydrocarbon (FPH) at this unit including sealing of the interior joints in the 84-inch effluent outfall line which runs through the area, removal of 36-inch and 72-inch abandoned sewer lines which ran through the area, installation/operation of FPH recovery sumps, and installation/operation of a FPH recovery trench. Drawings showing the location of the FCSA within the subject facility and the layout of the FCSA, are attached.

A status report and a plan for going forward at the FCSA were submitted to Illinois EPA on January 18, 2006; this submittal was approved by Illinois EPA on January 4, 2007. The January 18, 2006 submittal described improvements completed in 2005 at the FCSA recovery trench (installation of three new recovery wells, six new monitoring wells, and a larger-capacity storage

Mr. Thomas G. Tunnicliff Log No. B-145-CA-58 Page 2

tank to collect FPH). A clay barrier was installed between Sumps RTS-7 and RTS-8 in the FPH recovery barrier in November 2006 and a report documenting this effort was submitted to Illinois EPA on August 23, 2007. The August 23, 2007 submittal contained information regarding the installation of two more FPH recovery sumps in the area. Illinois EPA responded to the August 23, 2007 submittal on October 2, 2990; this letter requested that additional information be submitted regarding the clay barrier.

Mr. Harley's and Mr. Dull's November 25, 2009 submittal was provided to Illinois EPA in response to the October 2, 2009 letter. This submittal was reviewed as a proposed modification to the RCRA corrective action program at the above-referenced facility and is hereby approved subject to the following conditions and modifications:

- 1. The additional documentation provided in Figure 2 and 3 of the November 25, 2009 submittal from URS, sent on behalf of BP, regarding Comment 2 of IEPA's October 9, 2009 letter was determined to be adequate in addressing the intent of the clay barrier, the operation of the recovery trenches and the effectiveness of the clay barrier and FCSA trench. Quarterly fluid measurements, in accordance with Condition 4 below, must be continued to be collected from RTS-7 and RTS-8 to demonstrate that effectiveness of the clay barrier until BP and Illinois EPA agree that pumping from the west trench is not necessary.
- 2. The additional documentation provided in Figure 4 of the November 25, 2009 submittal from URS, sent on behalf of BP, regarding Comment 3 of Illinois EPA's October 9, 2009 was determined to be adequate in providing the clarification needed on the cross-section and construction of the clay barrier in the FCSA.
- 3. As proposed, reports shall be submitted to the Illinois EPA documenting operation of the FCSA recovery trench on a quarterly basis. These reports should include:
 - a. Time period the recovery system is in operation each day;
 - b. Flow rates of the recovered water/free product;
 - c. The actual amount of water and free product removed each day;
 - d. The total amount of water and free product removed for that quarter;
 - e. Document any maintenance and repair work to the system; and
 - f. Discussion of effectiveness of the recovery system.

Mr. Thomas G. Tunnicliff Log No. B-145-R-CA-10 Page 3

- 4. After remediation of FPH is complete, the facility must address the groundwater corrective measures in a Land Reuse Investigation Report and Closure Plan. The Land Reuse Investigation Report and Closure Plan must satisfy Condition 5 of the November 13, 2003 Illinois EPA letter (Log Nos. B-145-CA-20, 34, and 43) regarding groundwater. In addition, the facility must also evaluate whether perched groundwater is in hydrostratigraphic connection with the uppermost aquifer within the Land Reuse Investigation Report and Closure Plan.
- 5. A completed RCRA Corrective Action Certification Form must accompany any submittals made regarding RCRA corrective action at the facility.
- 6. As indicated in Illinois EPA's October 25, 2005 and January 4, 2007 letters addressing the FPH at the FCSA, the first step in the corrective action process at the FCSA has been to address FPH; the soil and groundwater contamination must be addressed later and be carried out in accordance with Condition VII.B.3 of the facility's RCRA permit.
- 7. Except as modified herein, corrective action at the subject facility must be carried out in accordance with (1) 35 Ill. Adm. Code 620, 724.201 and 742: (2) the facility's RCRA Permit; and (3) Illinois EPA letters regarding these activities.

This letter shall constitute Illinois EPA's final decision on the subject submittal. Within 35 days of the date of mailing of the Illinois EPA's final decision, the applicant may petition for a hearing before the Illinois Pollution Control Board to contest the decision of the Illinois EPA, however, the 35-day period for petitioning for a hearing may be extended for a period of time not to exceed 90 days by written notice provided to the Board from the applicant and the Illinois EPA within the 35-day initial appeal period.

Work required by this letter, your submittal or the regulations may also be subject to other laws governing professional services, such as the Illinois Professional Land Surveyor Act of 1989, the Professional Engineering Practice Act of 1989, the Professional Geologist Licensing Act, and the Structural Engineering Licensing Act of 1989. This letter does not relieve anyone from compliance with these laws and regulations adopted pursuant to these laws. All work that falls within the scope and definitions of these laws must be performed in compliance with them. The Illinois EPA may refer any discovered violation of these laws to the appropriate regulating authority.

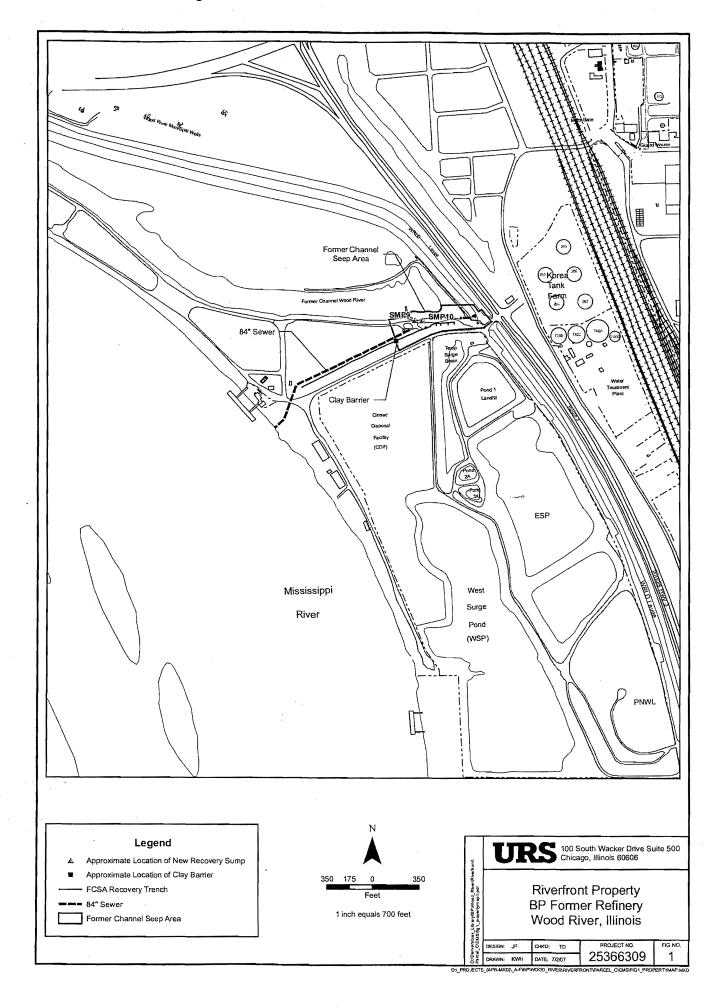
Mr. Thomas G. Tunnicliff Log No. B-145-R-CA-10 Page 4

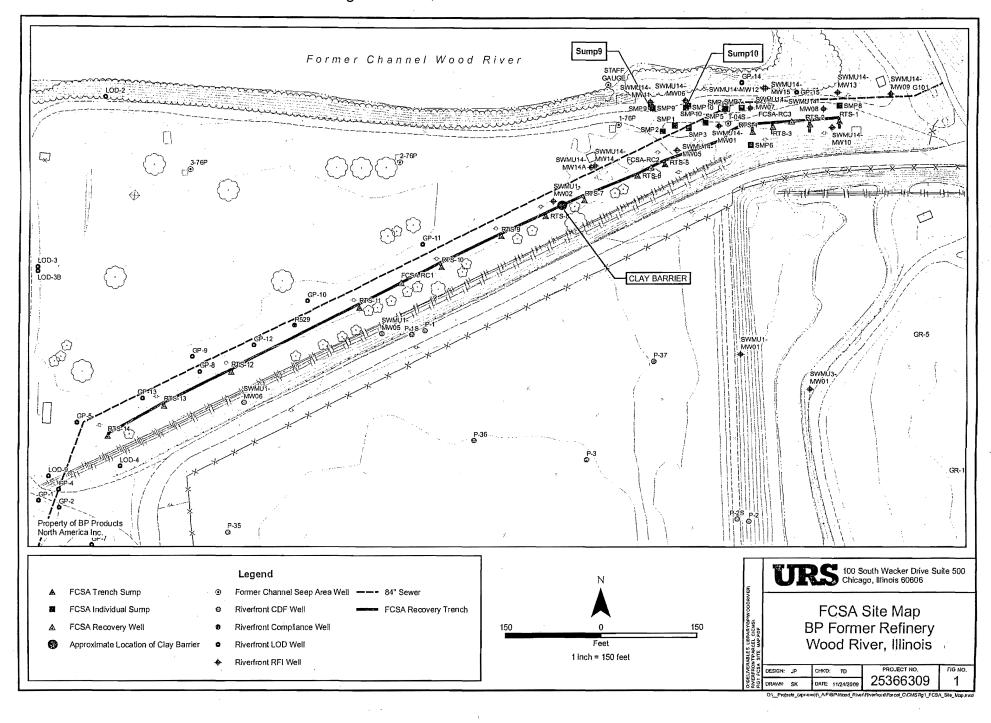
Should you have any questions regarding groundwater-related matters associated with this project, please contact Amy Boley at 217/558-4716; questions regarding other aspects of this project should be directed to Karen Nachtwey at 217/524-3273.

Sincerely,

Stephen F. Nightingale, P.E. Manager, Permit Section

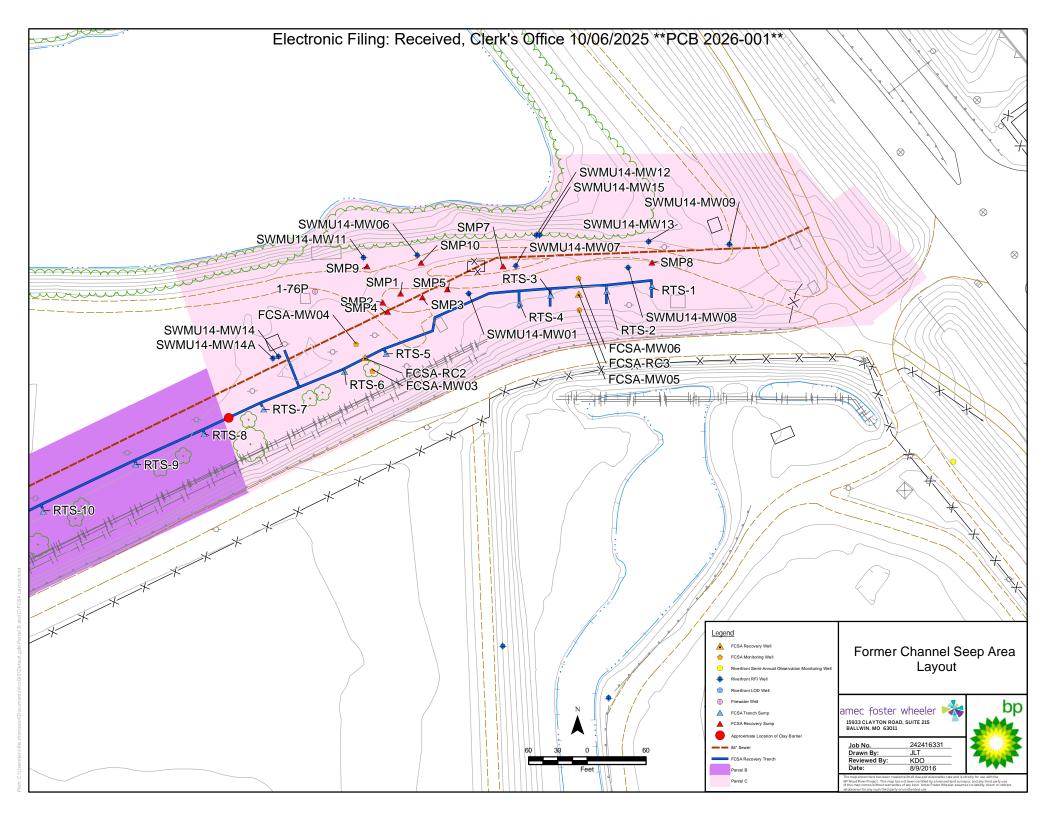
Bureau of Land


SFN:KEN/mls/102311s.doc


JVI (MY) 104M

Attachments: Site Layout Map

FCSA Layout Map


c: Ryan Hartley, URS

Attachment 4-2

Former Channel Seep Area Layout

Attachment 4-3

Table of Measured LNAPL Thicknesses (Third Quarter 2014 to Present)

RTS-1 to RTS-7 FCSA-MW03 and FCSA-MW05 Wells near FCSA-MW03 (FCSA-MW04 and FCSA-RC2) Wells near FCSA-MW05 (FCSA-MW06 and FCSA-RC3)

	FCSA LNAPL Thickness (Feet) Gauging Summary (7/2014-7/2016)												
Date	RTS-7	RTS-6	FCSA-MW03	FCSA-MW04	FCSA-RC2	RTS-5	RTS-4	RTS-3	FCSA-MW05	FCSA-MW06	FCSA-RC3	RTS-2	RTS-1
TOS Elev	411.31	408.13	417.3	417.97	418.45	411.27	411.17	412.22	417.66	417.71	417.55	411.65	409.49
BOS Elev	409.31	406.13	403.16	403.5	403.97	409.27	409.17	410.22	403.41	403.5	403.09	409.65	407.49
7/25/2014	0.00	0.00	NM	NM	0.00	0.00	0.00	0.00	NM	NM	0.00	0.00	0.00
8/11/2014	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00
8/26/2014	0.00	0.00	0.36	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00
9/9/2014	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
9/24/2014	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/20/2014	0.00	0.00	0.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/5/2014	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/4/2014	0.00	0.00	0.61	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00
12/17/2014	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00
1/16/2015	0.00	0.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/2/2015	0.00	0.00	1.09	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00
2/13/2015	0.00	0.00	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/27/2015	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/13/2015	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/30/2015	0.00	0.00	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/14/2015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
4/20/2015	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/5/2015	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/18/2015	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/4/2015	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/6/2015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
9/1/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/18/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/28/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/8/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/23/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/5/2015	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
11/20/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/4/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/18/2015	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/15/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/27/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/9/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/24/2016	0.00	0.00	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/7/2016	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/23/2016	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/7/2016	0.00	0.00	0.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/20/2016	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/2/2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/19/2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/14/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/30/2016	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/14/2016	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EXHIBIT B

Remediation Management Services Company

30 S. Wacker Dr. Ste 900 Chicago, IL 60606

Mobile: (847) 346-7112 Michelle.Knapp@bp.com

May 25, 2023

Jacqueline M. Cooperider, P.E.
Illinois Environmental Protection Agency
Bureau of Land, Division of Land Pollution Control
1021 North Grand Avenue East
Springfield, Illinois 62794-9276

Re: 1191155009—Madison County

BP Products North America Inc. - Riverfront Property

USEPA ILD980503106

Corrective Action Modification Request - Light Oils Dock Area

Dear Ms. Cooperider:

On behalf of BP Products North America Inc. (bp), Remediation Management Services Company (RMSC) is submitting an original and two (2) copies of the Corrective Action Modification Request for the Light Oils Dock Area on the Riverfront Property, located in Wood River, Illinois. This request includes background information and data from pre-design activities completed to support the modification. Also enclosed is an Illinois Environmental Protection Agency (Illinois EPA) Resource Conservation and Recovery Act (RCRA) Corrective Action Certification Form (LPC 632).

If you have any questions or concerns regarding the information provided, please contact me at (847) 346-7112.

Sincerely,

Michelle Knapp Liability Manager

Remediation Management Services Company

Enclosures: Corrective Action Modification Request - Light Oils Dock Area, Riverfront Property

Illinois EPA RCRA Corrective Action Certification Form (LPC 632)

cc: Amy Butler, Illinois EPA

Takako Halteman, Illinois EPA

Tom Stalcup, Mayor of the City of Wood River

Michael J. Hoffman, P.E., WSP USA Environment & Infrastructure

Kevin Wheeler, Sovereign Consulting Inc.

RCRA CORRECTIVE ACTION MODIFICATION REQUEST LIGHT OILS DOCK (LOD) AREA BP WOOD RIVER RIVERFRONT PROPERTY

Site

BP Products North America Inc. (bp) – Riverfront Property
1191150001 – Madison County
USEPA ILD980503106
RCRA Part B Permit Log No. B-145R-M-4, M-14, M-15, M-18, modified February 7, 2022

Introduction

On behalf of BP Products North America Inc. (bp), Remediation Management Services Company (RMSC) is submitting to the Illinois Environmental Protection Agency (Illinois EPA) this Corrective Action Modification Request for the Light Oils Dock (LOD) Area located within Parcel B of the former petroleum refinery Riverfront facility located in Wood River, Madison County, Illinois. A Riverfront Facility Parcel Map is provided as **Figure 1**.

The Riverfront facility Groundwater Corrective Action Program requires hydraulic control of Uppermost Aquifer (UMA) groundwater in the Riverfront Groundwater Management Zone (GMZ) via the Cone of Depression (COD) well system located on the BP Wood River Main Plant facility. The flow control of the COD well system is intended to prevent contaminant migration beyond the boundaries of the Riverfront facility for groundwater above Class 1 Groundwater Quality Standards (GQS) for volatile organic compounds (VOCs) and is the basis for the GMZ. The current corrective action (i.e., hydraulic control) is measured through quarterly groundwater gauging and contouring. Compliance is verified by monitoring contaminants in groundwater in GMZ boundary wells.

The proposed Corrective Action Modification (CA-Modification) includes implementation of a biological treatment program for impacted UMA groundwater within the LOD Area (Figure 2) in lieu of hydraulic flow control. The biological treatment program will consist of biosparging followed by natural attenuation mechanisms enhanced by passive bioventing. In lieu of measuring hydraulic control in in the LOD Area, the biological treatment program will provide contaminant control. Compliance will continue to be verified by monitoring contaminants in groundwater in GMZ boundary wells. Details are provided below.

Background

Within the UMA of the Riverfront facility, VOCs including benzene exceed Class 1 GQS in only a small number of wells centered within the LOD Area. As illustrated on the Fourth Quarter 2022 benzene isoconcentration map provided as **Figure 3**, benzene only exceeds the Class 1 GQS of 5 ug/L in monitoring well LOD-6 (1,870 ug/L in October 2022). Other constituents above Class 1 GQS in this area include arsenic and sporadically lead. Benzene and total and dissolved arsenic

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 2 of 14

concentrations have been decreasing at this location since monitoring began in 1995, and high and low water table trends do not generally correlate to increasing or decreasing trends for these analytes. Arsenic is not considered a chemical of concern that requires a constituent-specific remedy and is anticipated to attenuate following reduction of hydrocarbon impacts and resulting increases in oxidation reduction potential (ORP).

Light non-aqueous phase liquid (LNAPL) is observed intermittently at thicknesses typically <0.50 feet in monitoring wells LOD-6 and G-102/RL-2 in the LOD Area. Because of the intermittent LNAPL at minimal thickness, no transmissivity testing has been completed in these wells. Based on gauged LNAPL thickness, soil logging, and the LNAPL investigation described below, the majority of LNAPL mass does not correlate with the interval of gauged LNAPL thickness; rather, the source area is dominated by residual LNAPL.

Groundwater monitoring is currently completed at 13 monitoring wells located in the LOD Area in accordance with the Illinois EPA letter dated May 11, 2009 (Log No. B-145-CA-63). Of the 13 LOD monitoring program wells, 5 are also Riverfront Observation Monitoring Wells (RFOWs) and designated GMZ boundary wells monitored in accordance with the RCRA Permit. One additional monitoring well located within the LOD Area, Riverfront Gradient Control (RF GC) monitoring well G102, is also monitored in accordance with the current RCRA Permit.

A No Further Action determination was issued for soils in Parcel B in an Illinois EPA letter dated October 22, 2009. A No Further Action determination was issued for perched groundwater in Parcel B in an Illinois EPA letter dated May 20, 2016 (Log No. B-145R-CA-48); in response to Condition 2 of the Illinois EPA letter, bp submitted a proposed Environmental Land Use Control to Illinois EPA in a letter dated October 17, 2016. In a letter dated August 18, 2016, bp submitted a response to Conditions 3 and 4 of the Illinois EPA letter dated May 20, 2016 regarding the UMA in the East Corridor of Parcel B (**Figure 1**) and operation of the east portion of the Former Channel Seep Area (FCSA) recovery trench located within Parcel C. Illinois EPA approved cessation of the western portion of the FCSA recovery trench located within the East Corridor of Parcel B in a letter dated January 10, 2011 (Log No. B-145R-CA-10).

Currently, the groundwater remedy is containment of groundwater via operation of the COD well system and source reduction via natural attenuation mechanisms. Source remediation has been primarily driven by natural source zone depletion based on compositional analysis and pre-pilot test soil gas data. Though contaminants in groundwater show decreasing trends, the proposed Corrective Action will expedite the timeframe to achieve remedial objectives in groundwater. Enhancing the source remediation will represent a sustainable long-term risk reduction and will address remaining mobile and residual LNAPL.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 3 of 14

Pre-Design Investigations

The following section details the pre-design investigations completed in the LOD Area in support of this CA-Modification.

Subsurface Investigation

To further characterize LNAPL and geology in the area, a pre-design subsurface investigation was conducted in June 2022 utilizing hydraulic profiling tool (HPT) technology to verify geology in the area and ultra-violet optical screening tool (UVOST®) technology to identify where residual or mobile LNAPL may be present and constitute a source to dissolved phase hydrocarbons in groundwater. UVOST results were validated with logging of soils and gas chromatograph/flame ionization detector (GC/FID) analysis of LNAPL in soil.

Locations of the eight borings completed are shown on Figure 4, overlaid with the GC/FID results. UVOST-HPT boring logs are provided in Appendix A. Cross-section diagrams are provided as Figures 5 and 6. GC/FID results are provided in Appendix B. Soil boring logs are included in Appendix C. Findings are summarized below.

- The geology in this area was confirmed with the HPT.
 - The central portion of the LOD Area near monitoring well LOD-6 contains sandy clay at the surface that grades to silty clay with a thin discontinuous sand layer at approximately 10-12 feet below ground surface (bgs).
 - Another sand layer representing the upper portion of the UMA is present at approximately 20 feet bgs.
 - o Interbedded layers of silt and sand continue until 30 feet bgs, where most of the HPT logs in that area terminated. The area below this is primarily sand. This interbedded layer is present at deeper depths north of monitoring well LOD-6 and is generally shallower to the south.
- UVOST results identified where residual or mobile LNAPL may be present and constitute a potential source to dissolved phase hydrocarbons in groundwater.
 - The area including LOD-BH-1, LOD-BH-5, and LOD-BH-3 represents a potential source to dissolved phase concentrations in the UMA. This area is bounded by UVOST borings to the west, east, and south. Furthermore, surrounding monitoring wells RL-17 (north), LOD-9 (southeast), and G102/RL-2 (south) contain relatively low benzene concentrations.
 - UVOST results show that remaining LNAPL impacts are often present at interfaces between lower and higher permeability zones as shown on the crosssections.
 - Comparison of the intervals of UVOST response, well screens, and gauged thicknesses indicates that the majority of LNAPL impacts identified by UVOST do not correlate with gauged LNAPL intervals and the majority of LNAPL is residual in nature.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 4 of 14

Eleven (11) samples were collected for GC/FID analysis from six (6) borings as shown on **Figure 4**. Sample locations were selected to correspond with elevated UVOST responses. The samples generally represented weathered oil with a low volatile fraction. Peak area responses from the chromatograms are provided graphically and in tabular form in **Appendix B**.

- 7 of the 11 samples did not contain benzene. A table summarizing responses of key VOCs including benzene is included as **Table 2**.
- As shown on **Table 2**, of the 4 samples with benzene, the mol fraction of benzene suggests that <1% of the estimated original benzene concentration remains; i.e. the effective solubility of benzene in remaining LNAPL has decreased over time due to natural attenuation mechanisms since the original release.

Overall, the investigation helped delineate the vertical and horizontal distribution of remaining LNAPL and identify areas of more permeable (i.e., sandy) formation that could be conducive to fluid injections (i.e., air, gas, or liquid). The UVOST-HPT data along with GC/FID compositional analysis identified an area where LNAPL impacts containing benzene remain in or adjacent to more permeable layers and could represent a source to UMA groundwater; this is the target area for remediation as detailed below.

Sparge Evaluation

A short-term sparge evaluation was subsequently completed in October 2022 to determine the efficacy and design basis for an oxygen or air biosparge treatment system to address residual LNAPL in the target area identified during the pre-design soil boring investigation.

For performance of the sparge evaluation, three two-inch diameter piezometers were installed with the goal to set the screens in the sand seam near soil boring BH-1 and monitoring well LOD-6 with elevated impacts (see **Figures 4 through 6**). At boring BH-1, the area of impact was between 20-25 feet bgs; the sand layer representing the upper portion of the UMA is present at approximately 20 feet bgs. From this location, clay is present deeper in the southwest direction as confirmed with logging during boring. Drilling and logging was accomplished using the piston rod macro-core method within the sandy area. GC/FID results are included in **Appendix B**. Soil boring and well construction logs for the piezometers are provided in **Appendix C** and **Appendix D**, respectively. The well screens were set as follows:

- LOD-PZ-1 22-27 feet bgs
- LOD-PZ-2 23-28 feet bgs
- LOD-PZ-3 22-27 feet bgs

Vapor monitoring points (VMPs) were also installed with the goal of identifying whether sparging would cause vertical gas flow through the clay above the sand seam being targeted. One-inch diameter VMPs were installed adjacent the piezometers with screens from 7-12 feet bgs. Well construction logs for the VMPs are provided in **Appendix D**.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 5 of 14

The sparge test was conducted over two days using compressed oxygen (~99% by volume) cylinders connected through a regulator and manifold to deliver oxygen gas to the subsurface. On day one, oxygen was delivered at flow rates of 2, 4, 8, and 12 standard cubic feet per minute (scfm) to piezometer LOD-PZ-1 for a period of approximately 5 hours. On day two, oxygen was delivered at flow rates of 4, 8, and 12 scfm to piezometer LOD-PZ-3 over a period of approximately 2 hours.

Throughout the test, sparge flow and pressure were monitored at the sparge wells (LOD-PZ-1 and LOD-PZ-3). Surrounding wells and VMPs were monitored for induced pressure, soil gases, and groundwater geochemistry throughout the duration of the test, with at least one reading at each flow rate. Readings were also taken as a baseline before the test and after shutdown of the test.

Sparge test monitoring results relative to test goals are summarized below. Detailed monitoring results are provided in **Appendix E**.

- Sparge breakout pressure flow was attainable through the wells at breakout pressures of less than 4 pounds per square inch (PSI) throughout the test. The impacted zone is near the top of the saturated zone with minimal head pressure to breakthrough for flow.
- Operational pressure operational pressure for all flow rates was at 2 PSI or below throughout the test.
- Sparge flow rates sparge flow rates of 4-12 scfm were attainable at low pressures described above.
- Radius of influence (ROI) based on pressure and DO in surrounding piezometers though short duration, both pressure and DO increased during the test. Pressure in surrounding piezometers increased by over 0.1 inches of water during sparge tests at both LOD-PZ-1 and LOD-PZ-3. Results suggest an ROI of over 30 feet.
- Vertical gas flow pressure and soil gases in VMPs showed increases during sparging, demonstrating that there is some vertical gas flow through the relatively impermeable layers above the impacted zone. However, the changes in oxygen levels and pressure in VMPs were approximately 90% lower than measured in piezometers (screened deeper than VMPs) after travelling through the approximately 10-foot thick zone between the top of piezometer screen and bottom of the VMP screen.
 - o No gases other than ambient were measured at ground surface.
 - Sparge gases can be sufficiently controlled by the system and surrounding geology to not require vapor extraction for off-gas control.
- Sparging coincided with positive indications in soil gases in surrounding piezometers
 - Oxygen was measured at concentrations up to 40% by volume (significantly above baseline and atmospheric conditions) following system operation of less than 5 hours.
 - Following sparging, oxygen decreased and carbon dioxide increased suggesting degradation of impacts or oxidation of methane was occurring.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 6 of 14

- o Methane decreased following initiation of sparging, suggesting aerobic oxidation.
- VOCs increased during sparging then decreased, suggesting capacity for degradation.
- Similar trends were observed in VMPs but with lower overall levels of change as noted above.
- Sparging increased levels of both DO and ORP in piezometers following sparging.
 - After sparging was completed, post-test monitoring showed decreases in DO and ORP back to baseline overnight.

Overall, the test found that biosparging is a viable option for treating remaining hydrocarbon impacts in the LOD area and identified key design parameters for the design presented below.

Summary

The pre-design investigation confirmed the area and intervals of impacts to be targeted for treatment to decrease benzene concentrations in the LOD Area. The subsequent sparge evaluation results concluded that biosparging is a viable option for treating remaining hydrocarbon impacts in the LOD Area. The approximately 0.5-acre treatment area will surround borings LOD-BH-1, LOD-BH-3, and LOD-BH-5 near monitoring well LOD-6 as shown on **Figure 7**. Treatment depth will target impacts between ~25-35 feet bgs. Nested VMPs to be installed in the proposed system area will verify that no emissions are being generated and no off-gas treatment is required.

Results of the pre-design investigation and sparge test in the LOD Area were presented to the Illinois EPA during a conference call in January 2023. As part of the meeting, a conceptual remedy including biosparging followed by natural source zone depletion (NSZD) with passive bioventing and monitored natural attenuation (MNA) was provided for comment. Illinois EPA was receptive to this approach and advised that a CA-Modification request should be submitted for review.

Proposed Corrective Action

The proposed corrective action includes enhancing biodegradation to reduce benzene source concentrations and establish aerobic subsurface conditions. Initially, biodegradation will be enhanced with biosparging followed by passive bioventing with natural attenuation mechanisms (i.e., MNA and NSZD) to further mitigate dissolved phase groundwater concentrations. This proposed CA-Modification includes a replacement of current hydraulic control requirements with contaminant control via the proposed remedy, i.e., groundwater protection will be achieved through implementation of the remedy and associated groundwater monitoring. There are no current complete receptor pathways that drive risk; the primary driver for the remedy is benzene in groundwater. While concentrations of benzene in groundwater are currently decreasing in the LOD Area, the proposed corrective action will accelerate the reduction and reduce the timeframe to meet remedial objectives.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 7 of 14

The proposed CA-Modification will apply to 14 monitoring wells located within the LOD Area (see Figure 2 and Table 1). The proposed biosparge treatment area is shown on Figure 7. Under the current Groundwater Corrective Action Program, 6 of the 14 monitoring wells in the LOD Area are included in the quarterly hydraulic control gauging and contouring program: RFOWs LOD-1, LOD-2, LOD-5, LOD-7, RL-17B, and RF GC well G102. RFOWs LOD-1, LOD-2, LOD-5, LOD-5, LOD-7, and RL-17B are also designated GMZ boundary wells. Additionally, LOD monitoring program wells LOD-6 and LOD-9 are designated RFOWs under the optimized groundwater monitoring program approved by Illinois EPA in a letter dated January 19, 2023.

Under the proposed CA-Modification:

- RFOWs LOD-1, LOD-2, LOD-5, LOD-7, and RL-17B in the LOD Area will no longer be part of the quarterly hydraulic control gauging and contouring program or LOD monitoring program but will continue to be sampled in accordance with the RCRA permit;
- LOD-6 and LOD-9, which are designated RFOWs to be sampled annually under the optimized groundwater monitoring program, will no longer be monitored under the LOD monitoring program;
- LOD monitoring program wells LOD-3, LOD-3B, LOD-4, LOD-8, RL-17, and RL-18 will
 continue to be monitored in accordance with the Illinois EPA letter dated May 11, 2009;
 and
- RF GC monitoring well G102 will no longer be part of the quarterly hydraulic control gauging and contouring program.

Performance of the modified corrective action will continue to be reported in accordance with Section V.9 of the RCRA permit using the monitoring program proposed below. GMZ boundary wells will continue to be monitored for compliance with applicable GQS.

Following Illinois EPA approval of this CA-Modification, bp will submit Class 1* Permit Modification Request to Illinois EPA to modify Section IV.A.1 of the RCRA permit.

Biosparging

Biosparging will be utilized as the first stage for treating the benzene source in the LOD Area. Biosparging is implemented to introduce atmospheric air to the saturated zone of the subsurface to increase DO concentrations in the saturated zone and increase oxygen in soil gas in the vadose zone above the water table. The increase in oxygen is intended to convert the saturated and unsaturated zone to an aerobic environment and enhance aerobic biodegradation of hydrocarbons.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 8 of 14

Conceptual design of the system includes:

- Biosparging to reduce benzene concentrations in groundwater and create aerobic conditions in the subsurface that can be maintained utilizing subsequent (postbiosparging) passive bioventing.
 - Anticipated biosparging duration of 18-24 months based on approximately one order of magnitude reduction in benzene (half-life of 6 months assumed).
- Twelve (12) sparge wells will be utilized to treat the system area.
 - o ROI of 25 feet for sparge wells (50 feet on center) to maintain lower flow rates and eliminate need for vapor extraction.
 - o VMPs will be installed to confirm sufficient oxygen is present and no off-gassing of vapors (VOC or methane) occurs.
 - o Piezometers will be installed within the treatment area to monitor system effects.
- Solenoid-controlled manifold with timers for pulsed operation of approximately 6 wells concurrently.
- A low-pressure rotary vane or rotary claw compressor capable of 75 scfm @ 15 psi.
- An equipment trailer mounted with external disconnect to allow for portability in the case of flooding from adjacent river.

The proposed system layout is provided as **Figure 7**. A system process flow schematic is provided as **Figure 8**. Further details of the engineered system design are provided below.

As detailed above, monitoring wells LOD-1, LOD-2, LOD-5, LOD-6, LOD-7, LOD-9, and RL-17B will be removed from the LOD monitoring program requirements in the Illinois EPA letter dated May 11, 2009, and will be monitored in accordance with the RCRA Permit and this CA-Modification. LOD monitoring program wells LOD-3, LOD-3B, LOD-4, LOD-8, RL-17, and RL-18 will continue to be monitored in accordance with the Illinois EPA letter dated May 11, 2009. In addition to the RCRA Permit and LOD groundwater monitoring program requirements, operational and performance monitoring will be completed during biosparging to evaluate system performance and support a subsequent transition from biosparging to passive bioventing with MNA and NSZD. Biosparge monitoring parameters are summarized below.

Monitoring Activity (frequency)	Description	Locations
Operational Parameters (Monthly)	Collect pressure and flow readings. Perform system maintenance.	Biosparge enclosure and manifold

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 9 of 14

Monitoring Activity (frequency)	Description	Locations
Pressure/Soil Gas Monitoring (Monthly)	Collect pressure readings. Use pump on vapor meter to purge well and analyze for soil gases (CH4, CO2, O2, VOCs). Analyze headspace in monitoring wells or piezometers.	New VMPs, monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)
Groundwater Geochemistry (Quarterly)	Collect field parameters including depth to water/ LNAPL, pH, DO, ORP, temperature and specific conductivity. Collect groundwater samples for analysis of dissolved gases (CH4, CO2, O2, N2), MNA parameters (iron species, nitrogen compounds, sulfate), and metals including arsenic, lead, manganese, magnesium, nickel, and chromium.	Monitoring wells (LOD- 6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)
Groundwater COC (Quarterly)	Collect groundwater samples for analysis of BTEX, TPH-GRO, and TPH-DRO.	Monitoring wells (LOD- 6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)

Notes:

BTEX: benzene, toluene, ethylbenzene, total xylenes

TPH-GRO: total petroleum hydrocarbons as gasoline range organics TPH-DRO: total petroleum hydrocarbons as diesel range organics

Baseline monitoring for the above parameters will be completed prior to system startup. The dissolved gases and MNA parameters will help monitor groundwater geochemical conditions and degradation capacity during and after sparging. Dissolved metals are included to confirm sparging does not mobilize dissolved metals in groundwater.

As detailed above, under the proposed CA-Modification, the following six monitoring wells will no longer be part of the hydraulic control gauging and contouring program: RF GMZ/RFOWs LOD-1, LOD-2, LOD-5, LOD-7, RL-17B, and RF GC monitoring well G102. Performance of the modified CA-Modification will continue to be reported in accordance with Section V.9 of the RCRA permit using the monitoring program proposed below. GMZ boundary wells will continue to be monitored for compliance with applicable GQS.

The monitoring program will support selection of the appropriate time to transition from biosparging to natural attenuation mechanisms enhanced with passive bioventing. If the

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 10 of 14

following conditions are met, bp will implement the transition from biosparging to Passive Bioventing and MNA.

Parameter	Monitoring	Transition Point / Condition
LNAPL	Transmissivity (Tn)	Tn<0.8 ft²/day
(if present >0.5 feet thickness)	testing	
Dissolved phase benzene concentrations	Groundwater sampling	Stable or declining trend indicating remedial objectives will be met within 5 years
Oxygen and DO	Soil gas measurements at VMPs and dissolved gas sampling at monitoring wells	Indication of decrease in oxygen utilization or reduced source mass, e.g., consistent O2 >10% by volume in VMPs and DO >2 mg/L in groundwater

Passive Bioventing and MNA

The subsequent implementation of passive bioventing with MNA and NSZD will include installation of passive biovent wellheads on the 12 biosparge wells, monitoring piezometers, and deeper VMPs. Passive biovent wellheads are fitted with one-way valves to utilize pressure changes in the subsurface to introduce air and oxygen into the unsaturated zone (i.e., barometric pumping, where atmospheric air can enter, but soil gases cannot escape). The oxygen added to the subsurface can help maintain enhanced biodegradation processes. The following monitoring program will be implemented following the transition to passive bioventing with MNA and NSZD to demonstrate natural attenuation is occurring with no increase or migration of dissolved phase benzene.

Monitoring Activity	Description	Locations
Pressure/Soil Gas Monitoring (Quarterly)	Collect pressure readings. Use pump on vapor meter to purge well and analyze for soil gases (CH4, CO2, O2, VOCs). Analyze headspace in monitoring wells or piezometers.	New VMPs, monitoring wells (LOD-6, RL-17), and piezometers (LOD- PZ-1 through LOD-PZ-6)
Groundwater Geochemistry (Semi-Annual)	Collect field parameters including depth to water/ LNAPL, pH, DO, ORP, temperature and specific conductivity. Collect groundwater samples for analysis of dissolved gases (CH4, CO2, O2, N2), MNA parameters (iron species, nitrogen compounds, sulfate), and metals including arsenic, lead, manganese, magnesium, nickel, and chromium.	Monitoring wells (LOD- 6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 11 of 14

Monitoring Activity	Description	Locations
Groundwater COC (Semi-Annual)	Collect groundwater samples for analysis of BTEX, TPH-GRO, and TPH-DRO.	Monitoring wells (LOD- 6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)

Monitoring of the proposed corrective action will be reported as part of the quarterly Corrective Action Progress Reports for the Riverfront facility in accordance with Section V.9 of the RCRA permit. Following the transition, GMZ wells will continue to be monitored and compliance with applicable GQS maintained in GMZ boundary wells.

Engineered System Design

System details are provided in the sections below.

Biosparge Equipment Details

The proposed biosparge system is designed to deliver air from a compressor into the subsurface at flow rates up to 75 scfm @ 15 psi. Air from the compressor will have a particulate filter, throttling valve, temperature indicator, check valve, and pressure indicator. The compressor motor will be a totally enclosed, fan-cooled (TEFC) motor.

Flow will be routed from the compressor through a 12-point manifold to each of the biosparge wells under a pulsed scenario. Each manifold leg will have a flow control valve, rotameter-style flowmeter, and pressure gauge. Operation of each leg will be controlled with a normally-closed solenoid controlled via a human-machine interface (HMI) screen and timers.

The system components will be plumbed in a modular/mobile enclosure with environmental controls (e.g., lighting, heating, and ventilation). The system will be in an unclassified electrical area based on process conditions and location.

Operational safety features, including controls and fail-safes are included in the system design. All processes will be monitored and controlled by a programmable logic controller (PLC). This system will be shut down when Mississippi River elevation is above 414 feet above mean sea level (ft MSL) as measured at the Alton Lock and Dam to mitigate risk of flooding on equipment.

Well Details

Well spacing and layout for the individual remediation and monitoring wells considered the vertical and horizontal source area extent as identified in the pre-design investigation above. Proposed well layout and spacing is provided on **Figure 7**.

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 12 of 14

Well drilling and construction methods for the remediation wells are based on the specific lithologic conditions in the area and are planned using hollow-stem auger (HSA) or Sonic drilling technology. All new wells will be developed after installation. Purge water will be containerized and transferred to the on-site treatment system for disposal. Well construction is detailed below.

Biosparge Wells: Eleven (11) new biosparge wells will be installed in the treatment zone, and one of the pilot sparge wells will be utilized, for a total of 12 biosparge wells. Based on results of the pilot test, wells will be installed approximately 50 ft on center for a 25 ft ROI to develop overlapping zones of influence. Depth of wells is to target the lower depth of impacts, with 5-foot screens installed to depths of approximately 27-30 feet bgs based on stratigraphy in surrounding well/boring locations.

- Wells completed to a depth below the LNAPL interval with sufficient permeability as identified in the pre-design investigation - approximately 27 to 30 feet bgs depending on location;
- 5-feet of 0.020-inch slot well screen (flush-threaded);
- 2-inch diameter, schedule 40 PVC construction;
- Georgia #1 sand filter-pack to 1-foot above top of screen;
- 3-foot bentonite seal above filter-pack, followed by bentonite-cement grout to surface;
- Bottom slip cap, and locking gripper top cap;
- Surface completion with well extending 30 inches above ground surface with a steel well protector;
- Wellheads will be fitted with a lockable sample port to allow for pressure and soil gas measurements at the wellhead.

Piezometers: Three (3) new piezometers will be installed in the target depth interval from 20-30 feet bgs to monitor system performance, and later to monitor MNA and NSZD parameters in the transmissive sandier zones.

- Piezometers completed to 30 feet bgs;
- 10-feet of 0.010-inch slot well screen (flush-threaded);
- 2-inch diameter, schedule 40 PVC construction;
- Georgia #1 sand filter-pack to 1-foot above top of screen;
- 3-foot bentonite seal above filter-pack, followed by bentonite-cement grout to surface;
- Bottom slip cap, and locking gripper top cap;
- Surface completion with well extending 30 inches above ground surface with a steel well protector;
- Wellheads will be fitted with a lockable sample port to allow for pressure and soil gas measurements at the wellhead.

Vapor Monitoring Points: Five (5) nested VMPs will be installed to confirm no air emissions are present due to biosparging, to monitor system performance in the treatment area, and later to monitor MNA and NSZD parameters; one nested VMP location from the pilot sparge test will be

Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 13 of 14

utilized, for a total of 6 sets of VMPs. Each set of nested VMPs will contain two monitoring points to monitor gas gradients vertically at 5 feet bgs and 15 feet bgs, for a total of 12 monitoring points.

- 2 nested screen depths 5 feet bgs, 15 feet bgs;
- 3/4-inch schedule 40 PVC points; 24-inch screen lengths of 0.010-inch slot well screen;
- Georgia #1 sand filter-pack from 6-inches below to 6-inches above screens;
- Bentonite seals between screens and above top of screen;
- Above top screen bentonite-cement grout to surface;
- Bottom slip cap;
- Surface completion with wells extending 30 inches above ground surface with a steel well protector;
- Wellheads will be fitted with a lockable sample port to allow for pressure and soil gas measurements at the wellhead.

System Infrastructure and Logistics

The biosparge system treatment area is an open area containing one aboveground storage tank within a secondary containment wall and berms surrounding the area. There are no known historical underground utility corridors in the area that could cause short-circuiting or convey vapors horizontally. The treatment area is near the Mississippi River and has been inundated during previous flooding events. The area is closed to the general public but is accessible by multiple other companies (i.e., it is not within the bp-controlled fence line).

Because of the small number of wells, and to maximize control, all piping runs will be individual lateral runs from an equipment trailer housing the biosparge equipment to the biosparge wells. Though there are no freezing concerns with compressed air, the air conveyance lines will be buried at a depth of 12 to 18 inches bgs and set in gravel. This will prevent any concerns with above ground infrastructure during flooding and prevent potential tripping hazards. Pipe materials of construction and specifications consider the material to be conveyed (compatibility), the flow rates, and applied pressures and temperatures. Because all piping will be at relatively low pressure (<15 psi limited by the compressor) and will be buried, HDPE pipe is specified as it is resistant to corrosion and can meet the pressure and temperature requirements.

The system trailer will stay on a hitch with disconnects should flooding require the equipment be moved to avoid damage. A temporary system move will be considered when the Mississippi River elevation is above 414 ft MSL as measured at the Alton Lock and Dam. This will also allow for redeployment of the system in a different area, as needed, following biosparging in the LOD Area.

Power is available from a nearby 480V pole-mounted transformer. A 480V line will be run to a power pole installed adjacent the proposed system trailer and will feed directly to an external disconnect mounted to the system enclosure. A step-down transformer will be provided on the

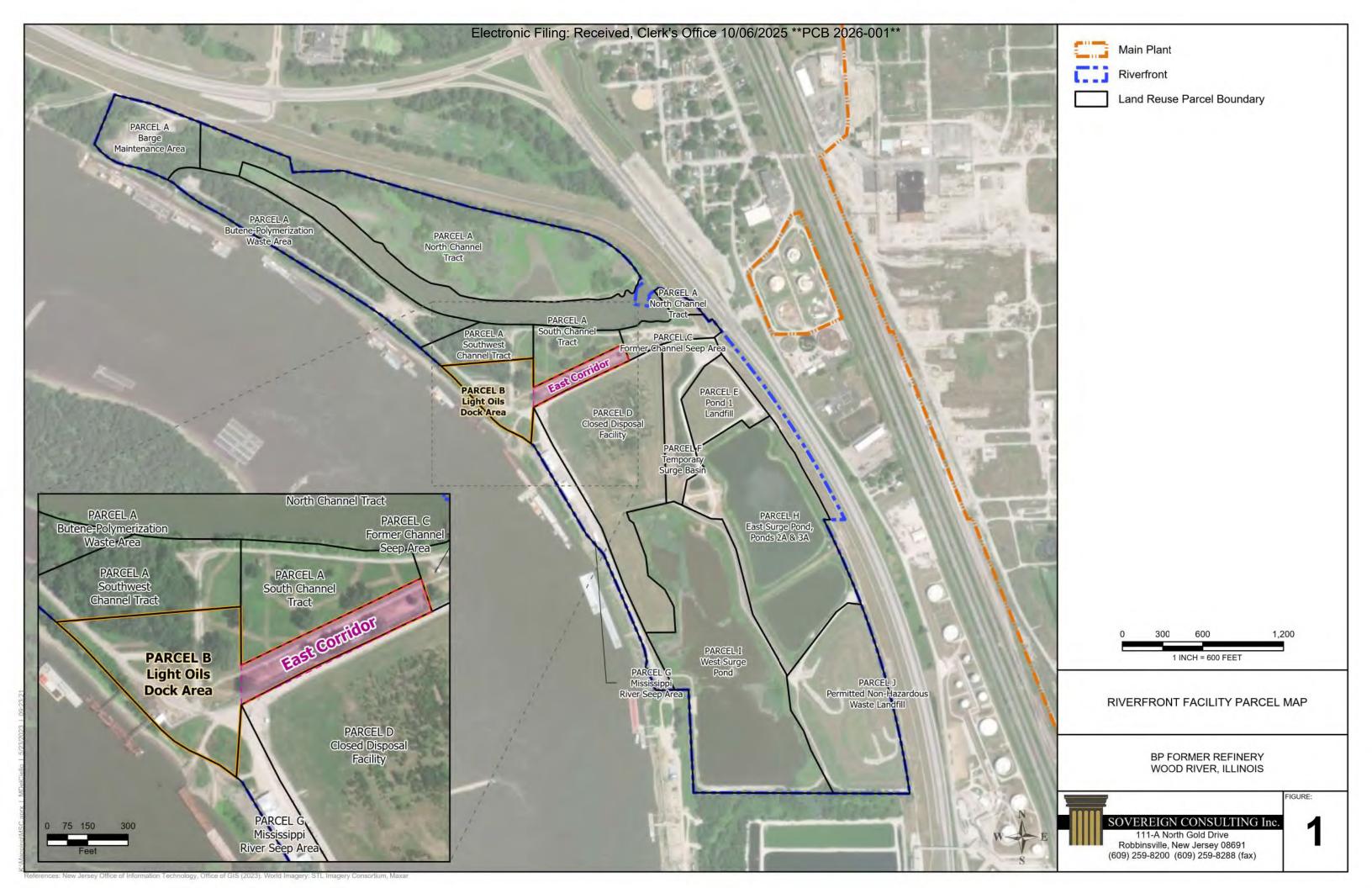
Corrective Action Modification Request Light Oils Dock Area May 25, 2023 Page 14 of 14

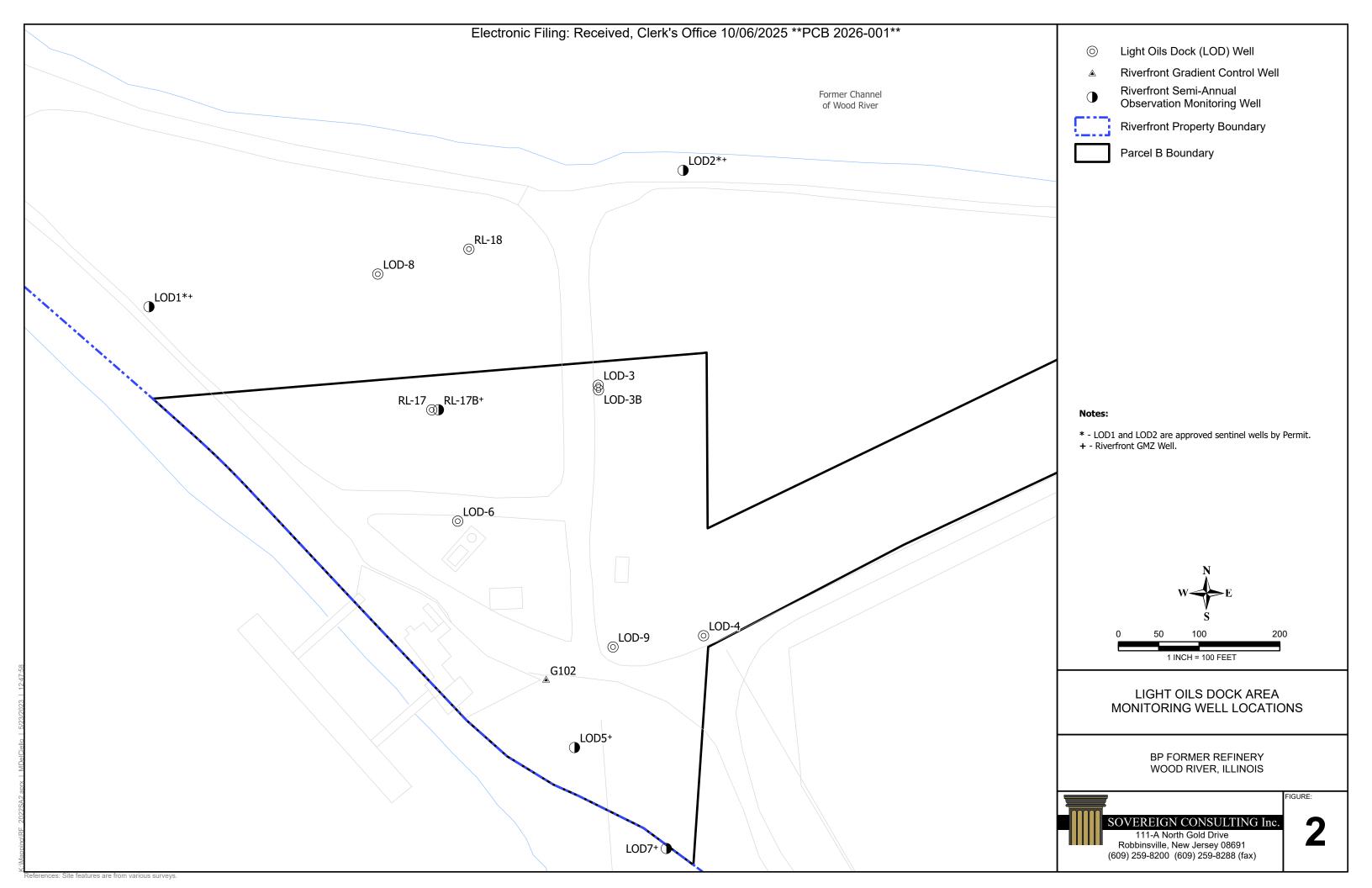
enclosure as needed to power system components. The system enclosure will be grounded using a copper rod driven into the ground.

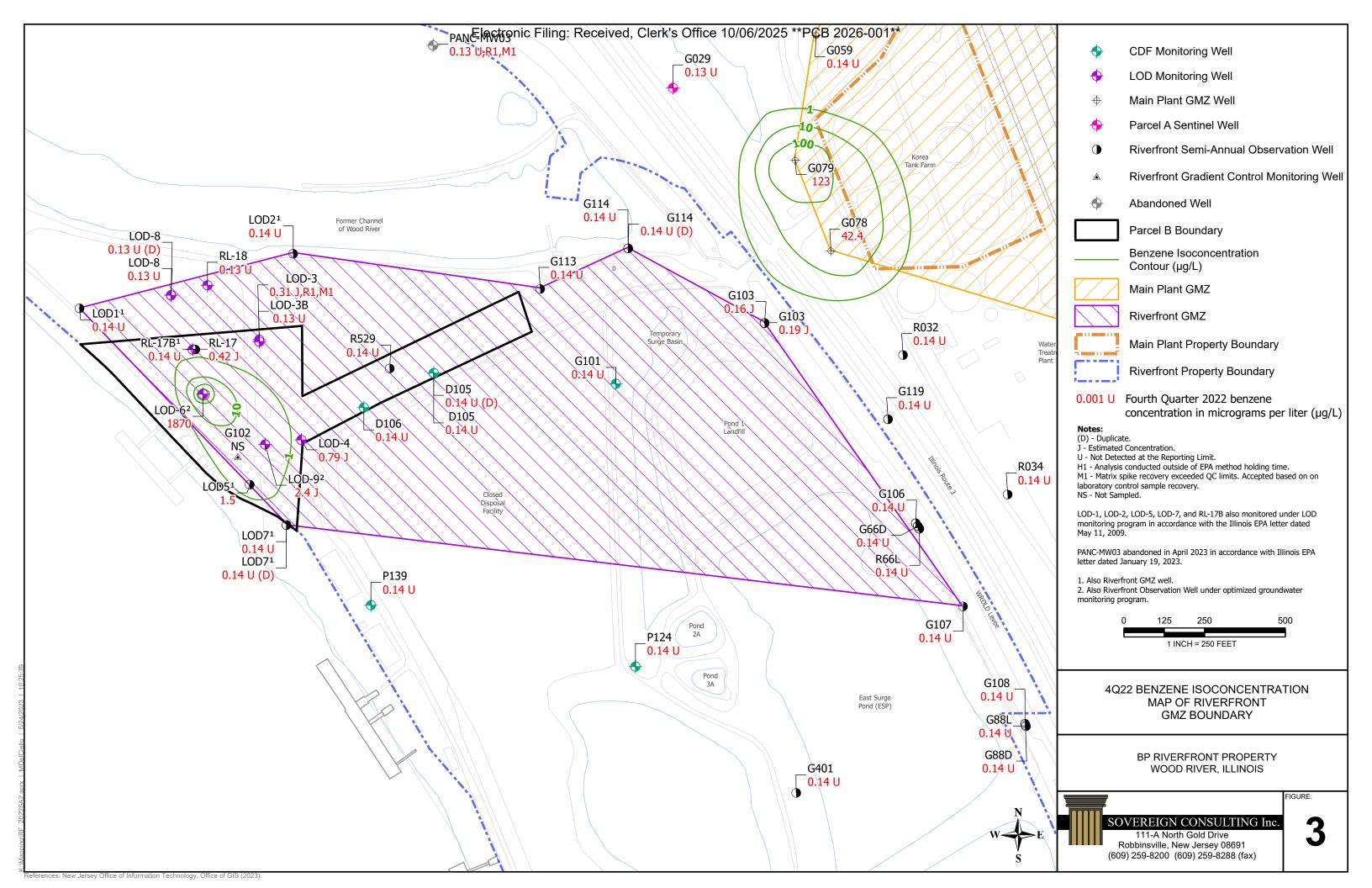
Path Forward

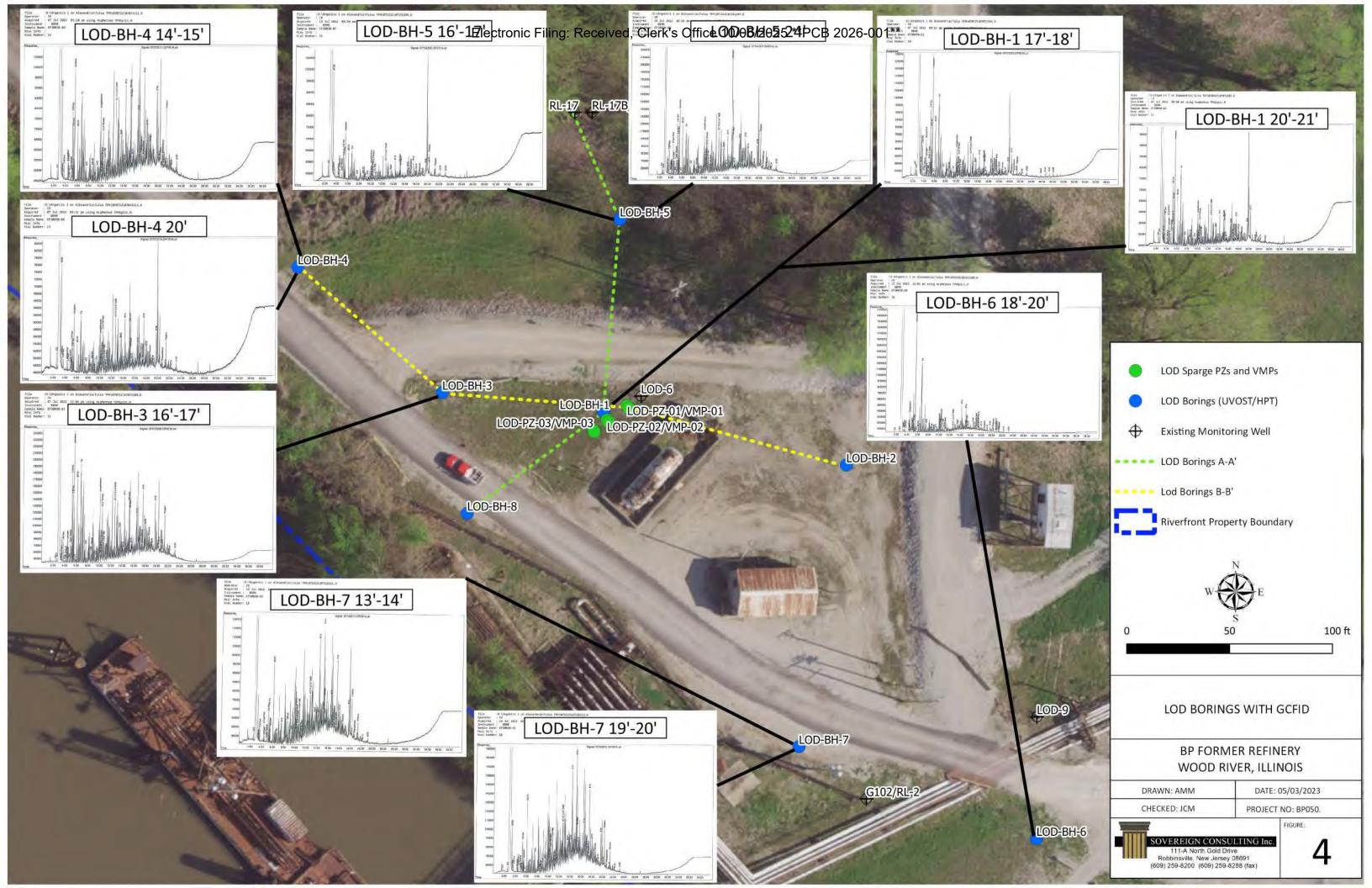
Upon Illinois EPA approval of the proposed CA-Modification, bp will initiate system procurement and installation activities for the proposed biosparge system. Once operational, the proposed contaminant control remedy will replace the current corrective action of hydraulic control for wells in the LOD Area. It is estimated that the system could be installed within 180 days of Illinois approval of this CA-Modification request.

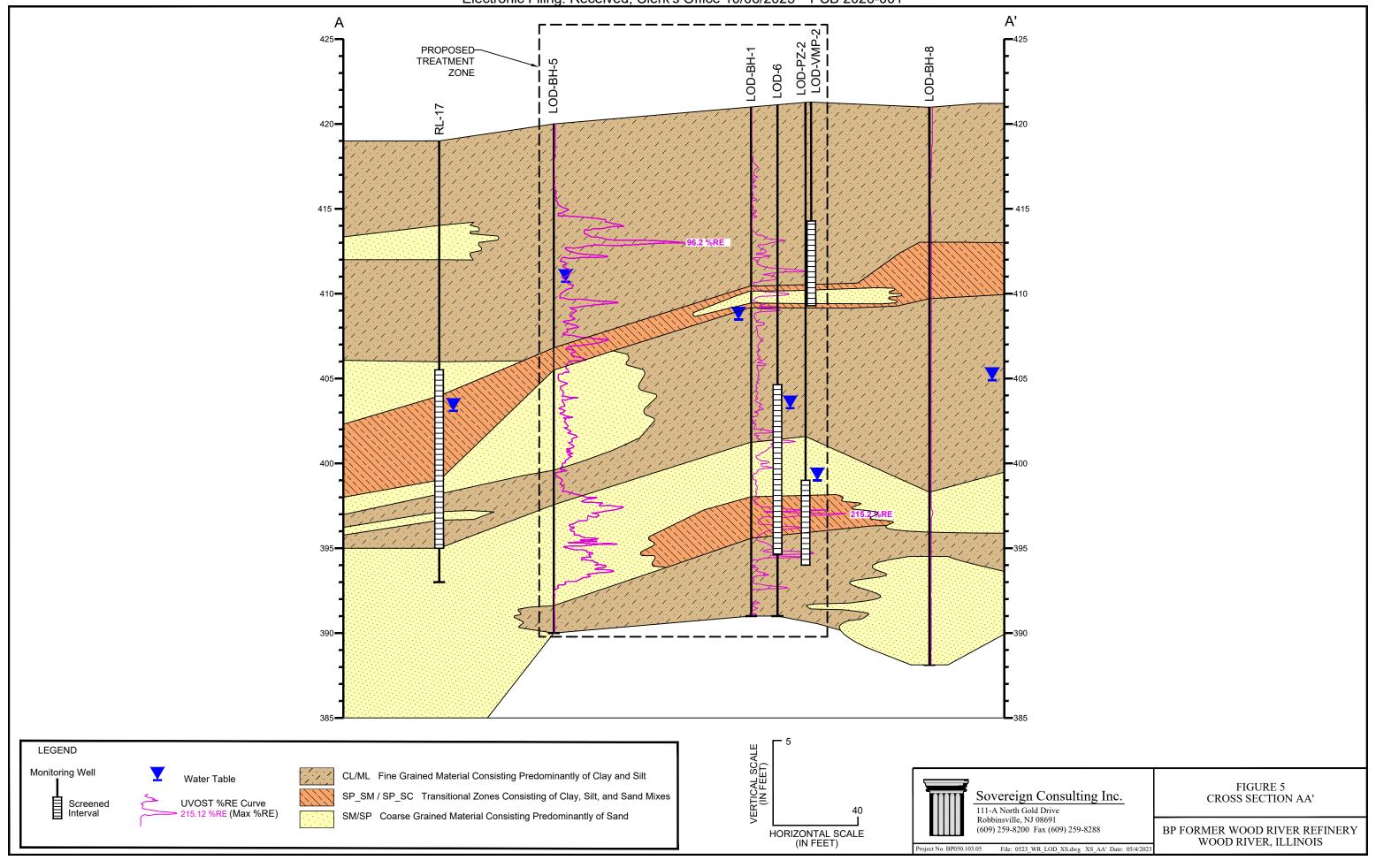
Under the proposed CA-Modification, monitoring wells LOD-1, LOD-2, LOD-5, LOD-7, RL-17B, and G102 located within the LOD Area will no longer be part of the hydraulic control gauging and contouring program. Performance of the modified Corrective Action Program will continue to be reported quarterly in accordance with Section V.9 of the RCRA permit. GMZ boundary wells will continue to be monitored for compliance with applicable GQS.

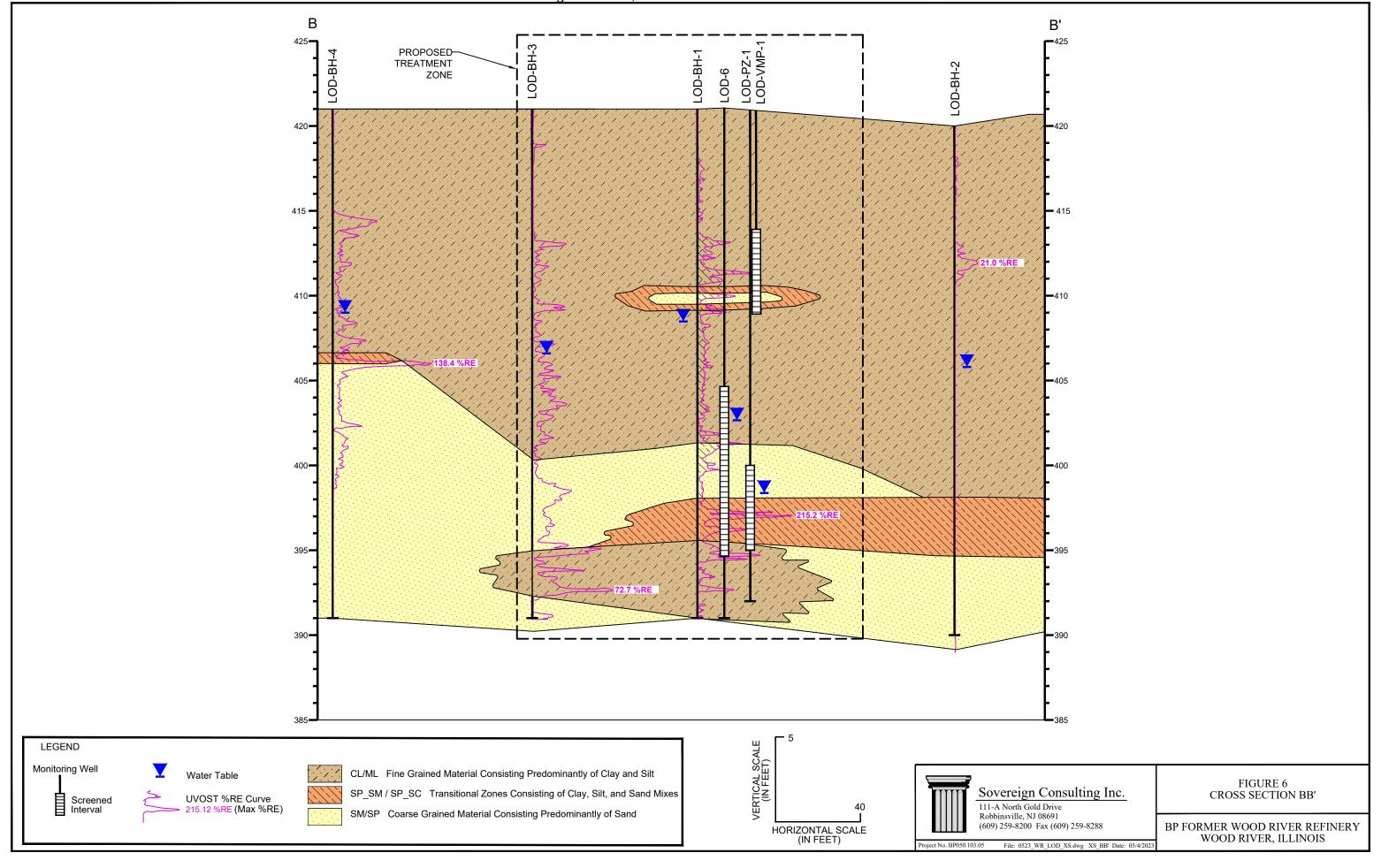

Following Illinois EPA approval of this CA-Modification, bp will submit Class 1* Permit Modification Request to Illinois EPA to modify Section IV.A.1 of the RCRA permit.


ATTACHMENTS


Figures 1-8 Tables 1-2 Appendices A-E


FIGURES


Figure 1	Riverfront Facility Parcel Map
Figure 2	Light Oils Dock Area Monitoring Well Locations
Figure 3	4Q2022 Riverfront Benzene Isoconcentration Map
Figure 4	LOD Borings with GCFID and Cross-Section Traverses
Figure 5	Cross-Section A-A'
Figure 6	Cross-Section B-B'
Figure 7	Proposed Treatment System Layout
Figure 8	Process Flow Schematic



TABLES

Table 1 Light Oils Dock Area Monitoring Wells

Table 2 GCFID Peak Area Responses

TABLE 1
LIGHT OILS DOCK AREA MONITORING WELLS
BP RIVERFRONT PROPERTY - WOOD RIVER, ILLINOIS

IEPA Well ID	BP Well ID	Current Well Program	TOS Interval (ft bgs)	BOS Interval (ft bgs)	TOS Interval Elevation (ft amsl)	BOS Interval Elevation (ft amsl)	2020 TOC Elevation (ft amsl)	2020 Grade Elevation (ft amsl)
LOD-3	LOD-3	LOD	30	40	390.75	380.75	423.04	420.73
LOD-3B	LOD-3B	LOD	45	55	375.80	365.80	423.09	420.79
LOD-4	LOD-4	LOD	31	41	394.22	384.22	427.76	425.20
LOD-6	LOD-6	LOD	18.3	28.3	403.19	393.19	422.92	421.70
LOD-8	LOD-8	LOD	17.9	28	402.01	391.91	NS	NS
LOD-9	LOD-9	LOD	18.5	28.5	403.93	393.93	425.16	422.62
RL-17	RL-17	LOD	14	24	404.82	394.82	421.51	418.81
RL-18	RL-18	LOD	20	30	401.34	391.34	423.35	421.21
LOD-1*	LOD-1	LOD/RFOW	21.1	31.1	403.41	393.41	426.51	424.58
LOD-2*	LOD-2	LOD/RFOW	31.2	41.2	389.79	379.79	423.51	421.15
LOD-5*	LOD-5	LOD/RFOW	18.5	28.5	403.43	393.43	423.03	422.11
LOD-7*	LOD-7	LOD/RFOW	18.5	28.5	401.65	391.65	422.11	420.34
RL-17B*	RL-17B	LOD/RFOW	45	55	373.89	363.89	421.52	418.82
G102	RL-02	RF GC	24	34	398.78	388.78	426.30	422.78

Notes:

TOS = top of screen

BOS = bottom of screen

ft bgs = feet below ground surface

ft amsl = feet above mean sea level

LOD = Light Oils Dock

RFOW = Riverfront Observation Well

RF GC = Riverfront Gradient Control Monitoring Well

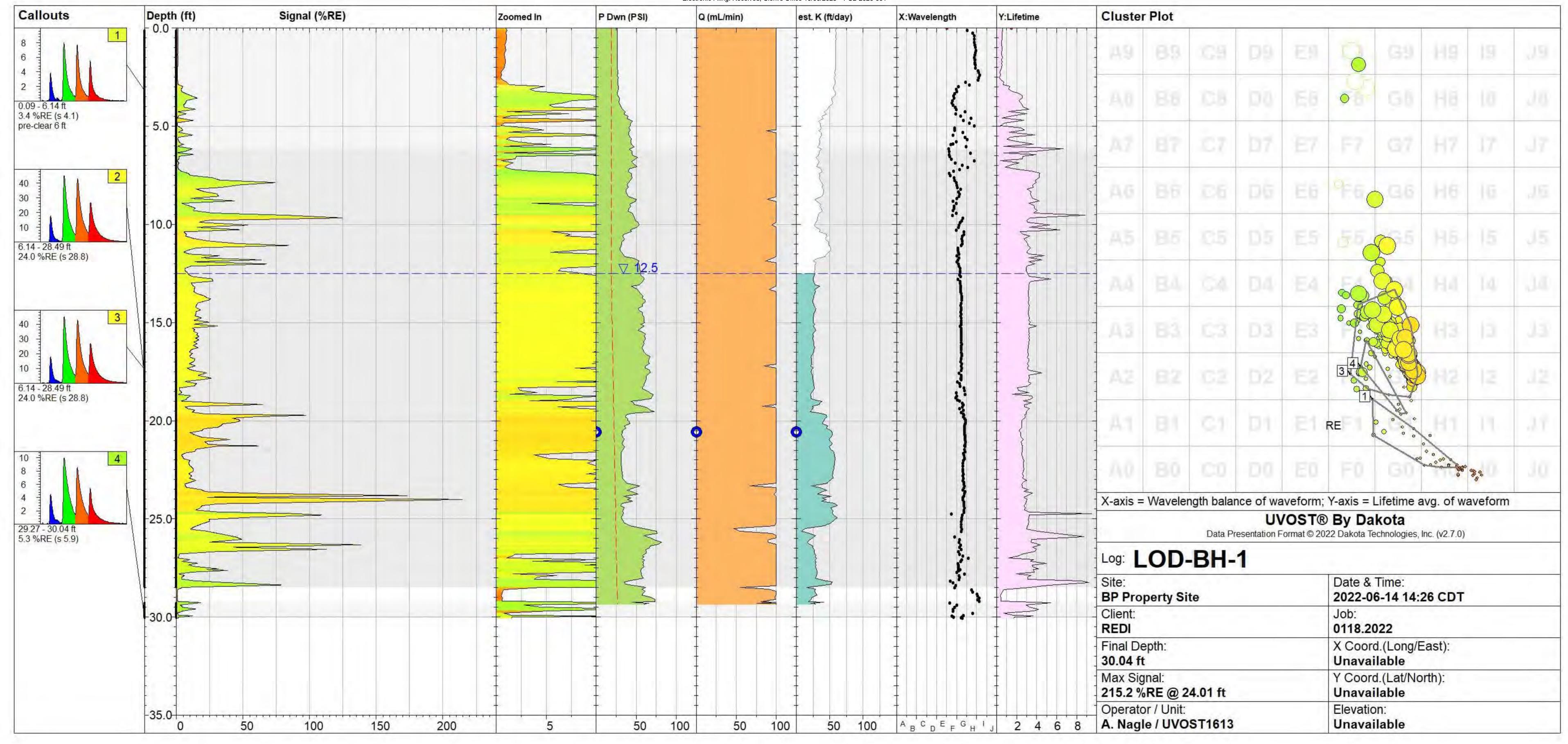
NS = Not Surveyed

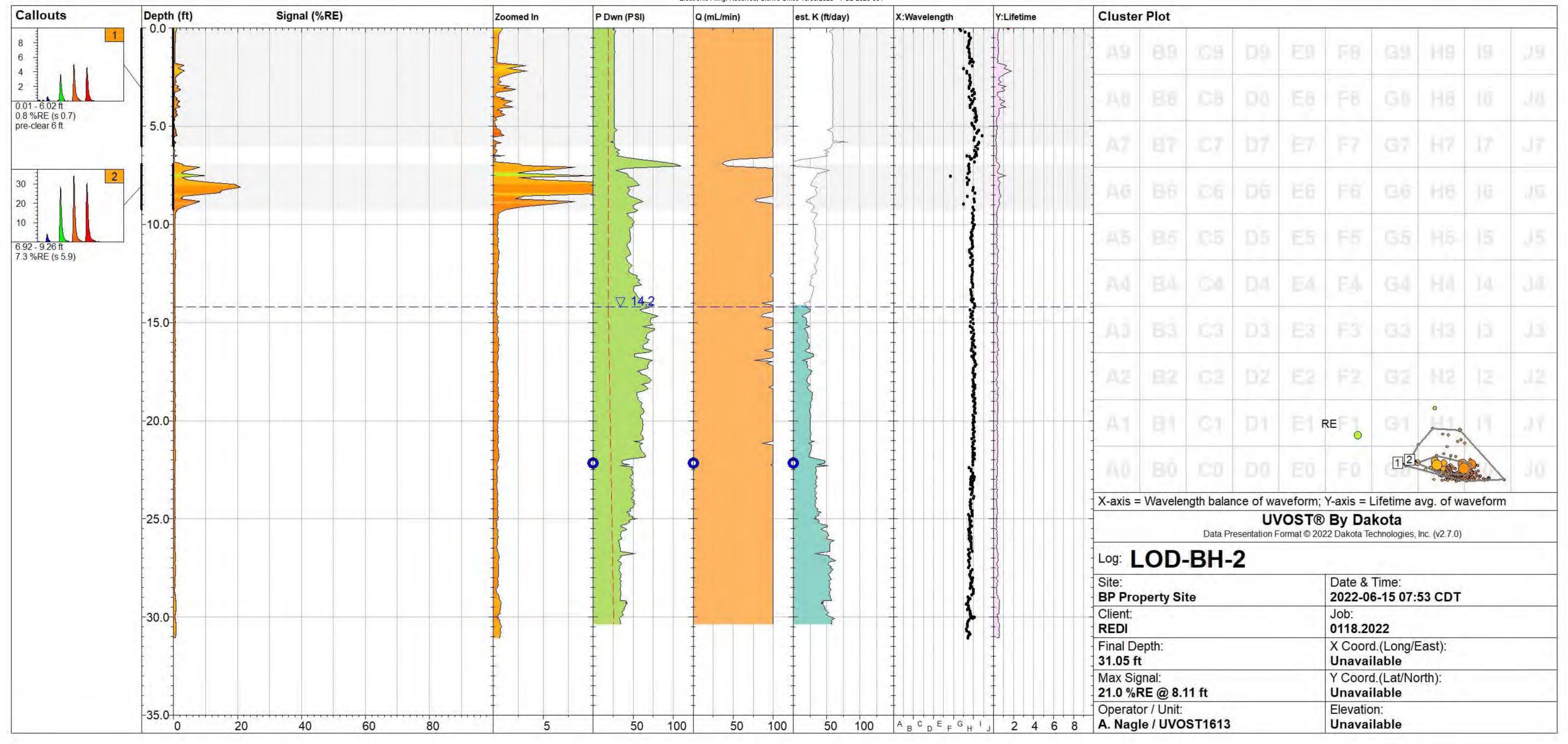
Elevations based on 2020 5-Year TOC survey elevation.

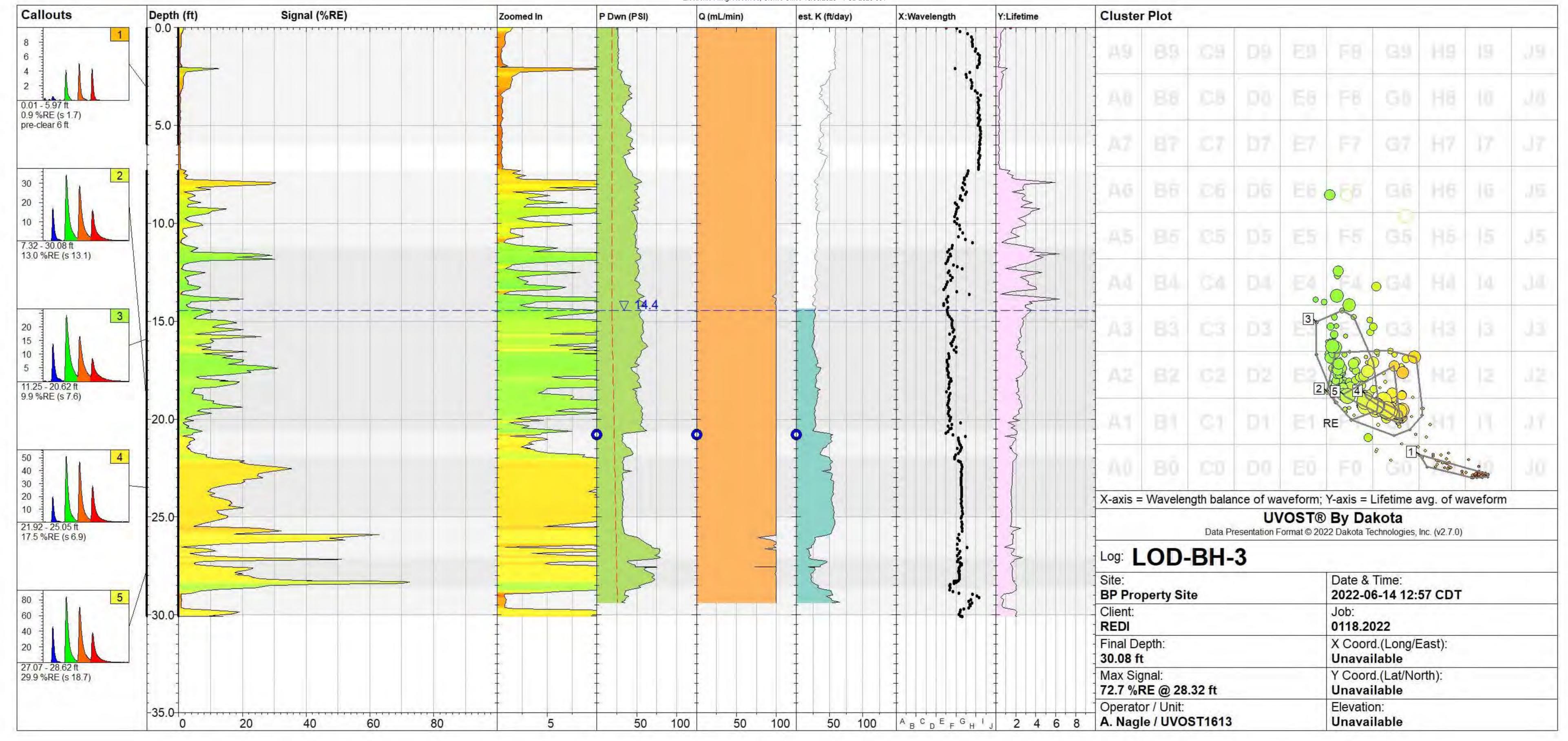
Current LOD Program monitoring required per Illinois EPA letter dated May 11, 2009.

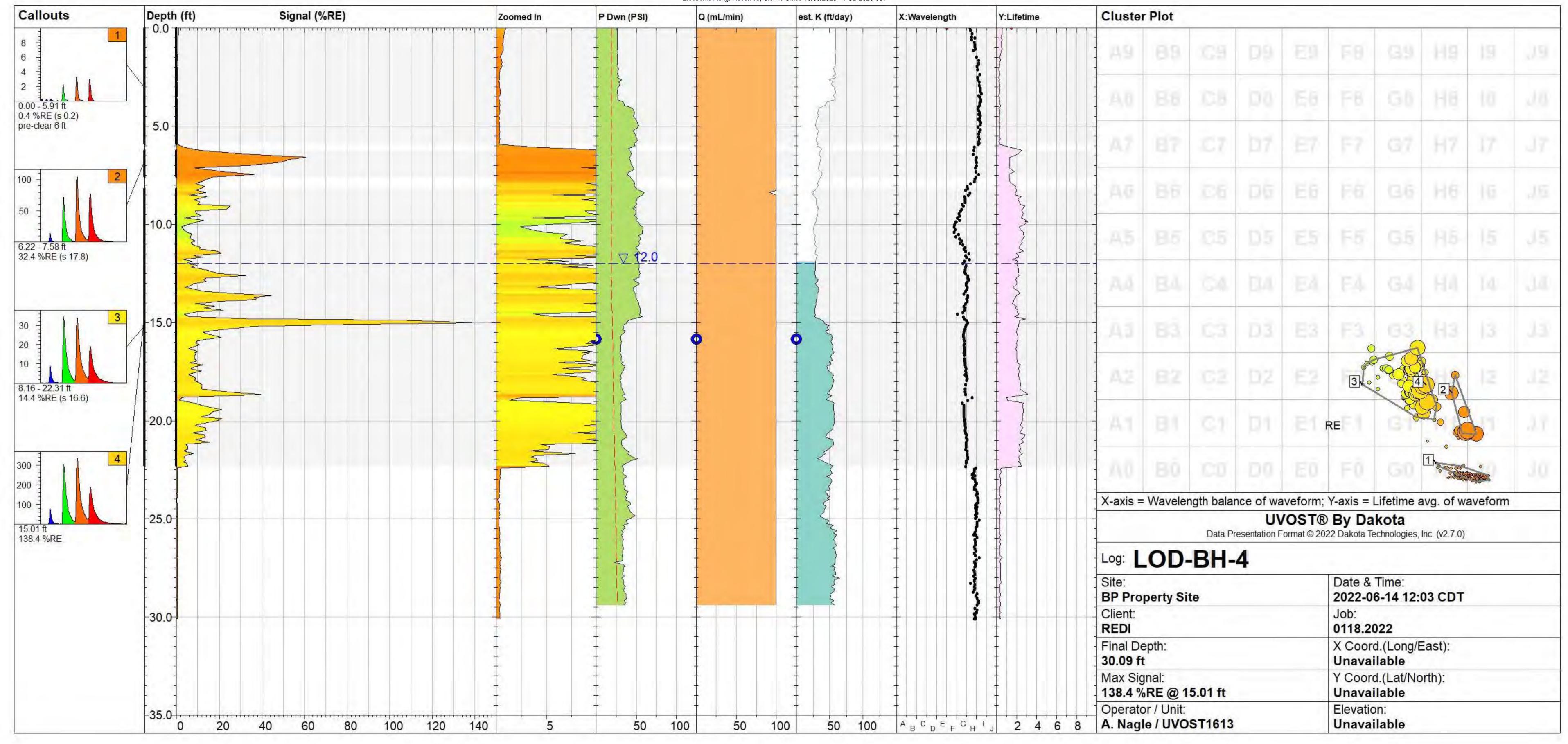
^{*}Also designated GMZ boundary well under the RCRA Permit.

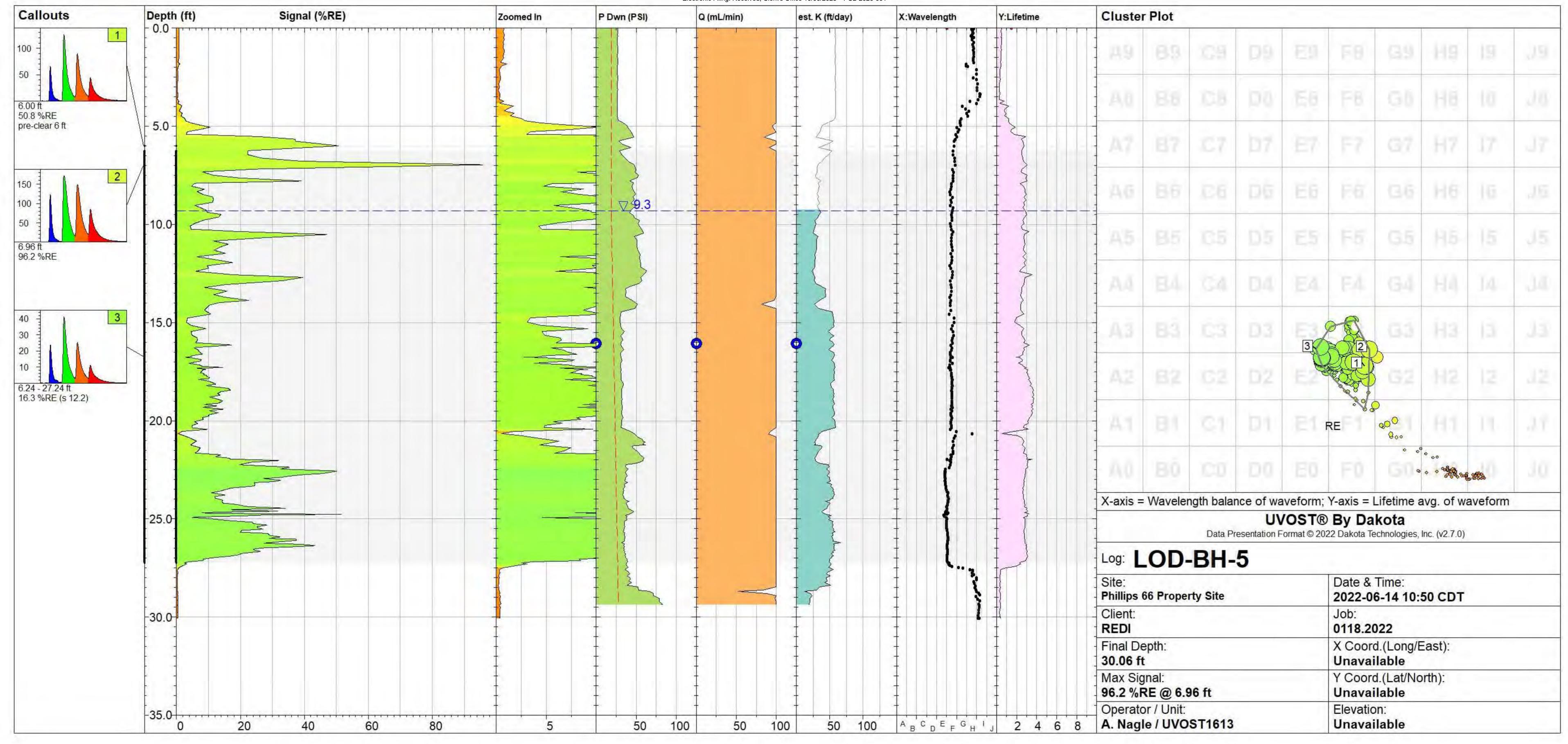
Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** TABLE 2 GCFID PEAK AREA RESPONSES RELATIVE MOL FRACTION BP RIVERFRONT PROPERY, WOOD RIVER, ILLINOIS

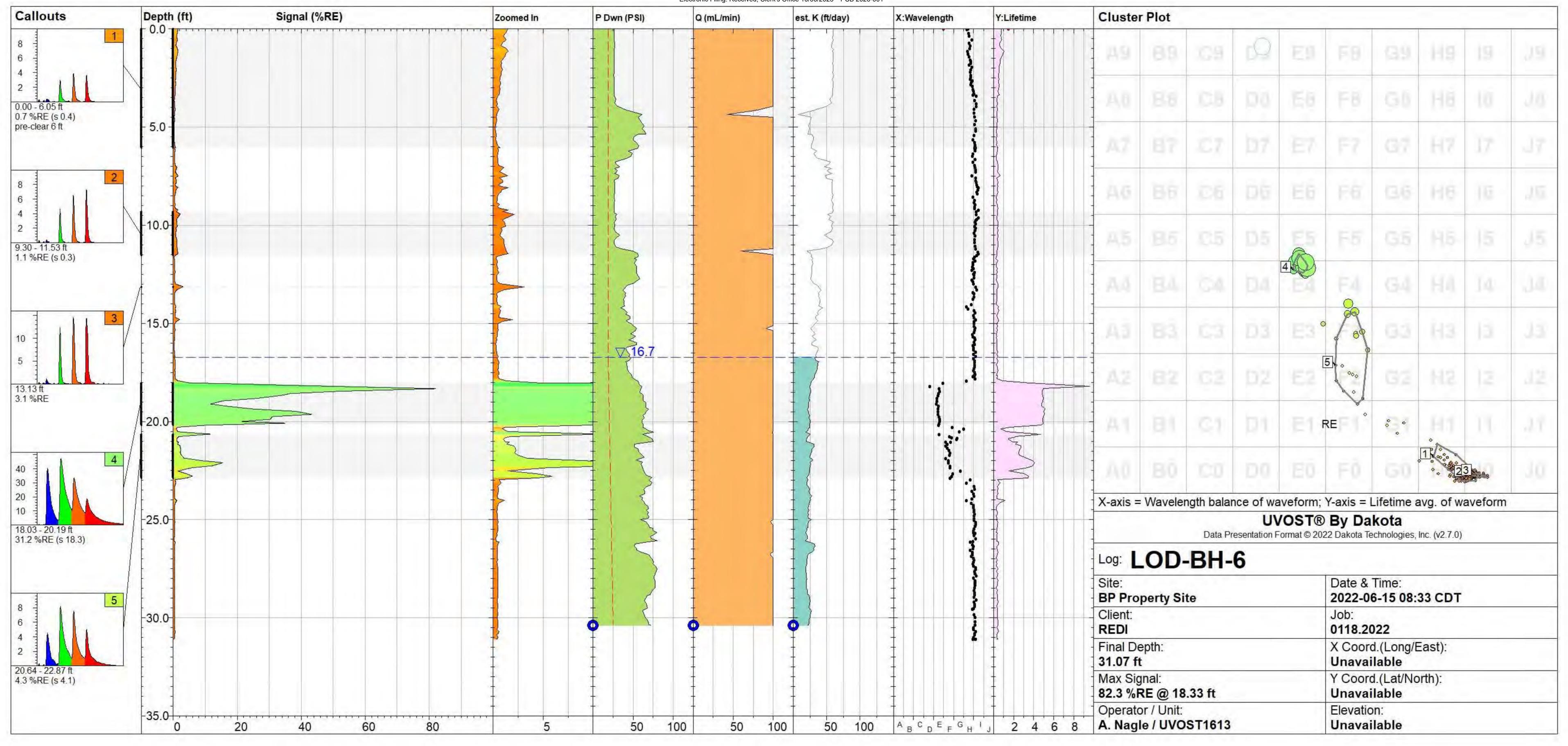

Compound Name	LOD-BH-1 (17-18)	LOD-BH-1 (20-21)	LOD-BH-3 (16-17)	LOD-BH-3 (21-22)	LOD-BH-4 (14-15)	LOD-BH-4 (20)	LOD-BH-5 (16-17)	LOD-BH-5 (24)	LOD-BH-6 (18-20)	LOD-BH-7 (13-14)	LOD-BH-7 (19-20)
Hexane	0.27%	0.00%	0.17%	0.00%	0.00%	0.00%	0.00%	0.49%	0.00%	0.00%	0.00%
Benzene	0.82%	0.00%	0.81%	0.00%	0.00%	0.00%	0.00%	0.88%	0.08%	0.00%	0.00%
Cylcohexane	3.95%	2.09%	7.85%	1.25%	0.00%	0.73%	0.72%	8.84%	3.21%	0.87%	0.76%
Toluene	1.16%	0.84%	2.76%	0.65%	0.50%	0.38%	0.19%	1.85%	14.92%	0.18%	0.16%
Ethylbenzene	0.12%	0.33%	0.60%	0.05%	0.02%	0.05%	0.00%	0.29%	0.99%	0.17%	0.23%
m/p-Xylene	0.09%	0.08%	0.43%	0.10%	0.09%	0.07%	0.02%	0.29%	0.16%	0.33%	0.02%
o-Xylene	0.03%	0.05%	0.31%	0.07%	0.07%	0.06%	0.02%	0.23%	1.39%	0.43%	0.45%
1,3,5-Trimethylbenzene	0.46%	0.37%	2.03%	0.66%	0.29%	0.46%	0.13%	1.88%	2.48%	1.51%	1.50%
1,2,4-Trimethylbenzene	0.15%	0.12%	0.72%	0.23%	0.09%	0.14%	0.03%	0.64%	0.99%	0.61%	0.63%

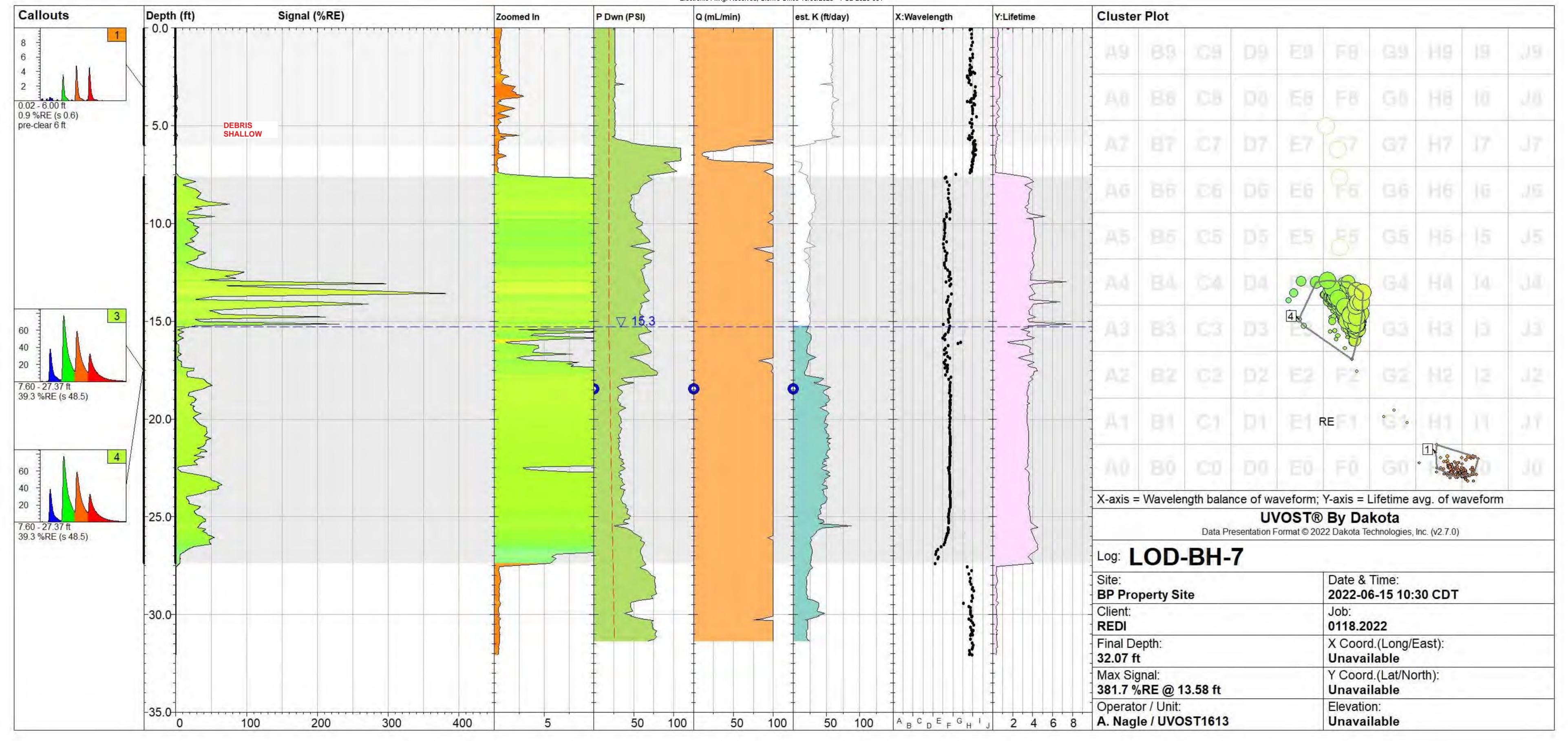

Note:

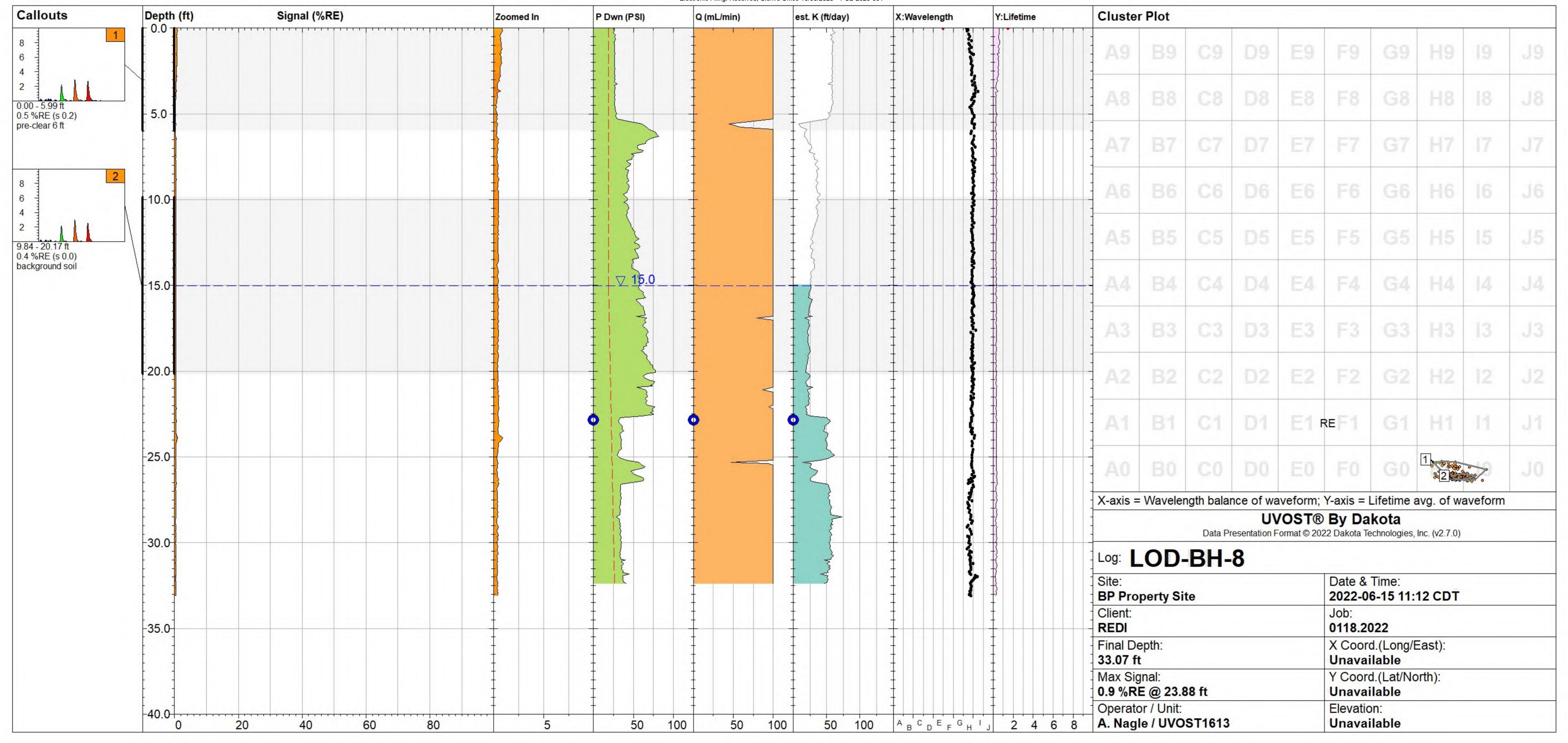

Relative mol fraction showing percentage of compound remaining compared to an unweathered standard for this LNAPL type.

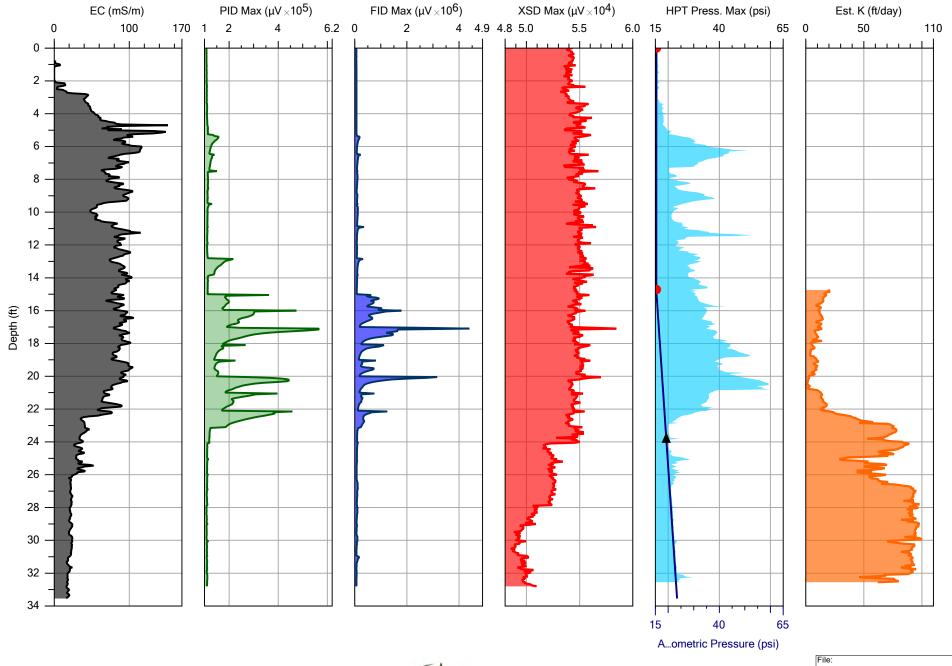

APPENDICES


APPENDIX A UVOST-HPT Boring Logs





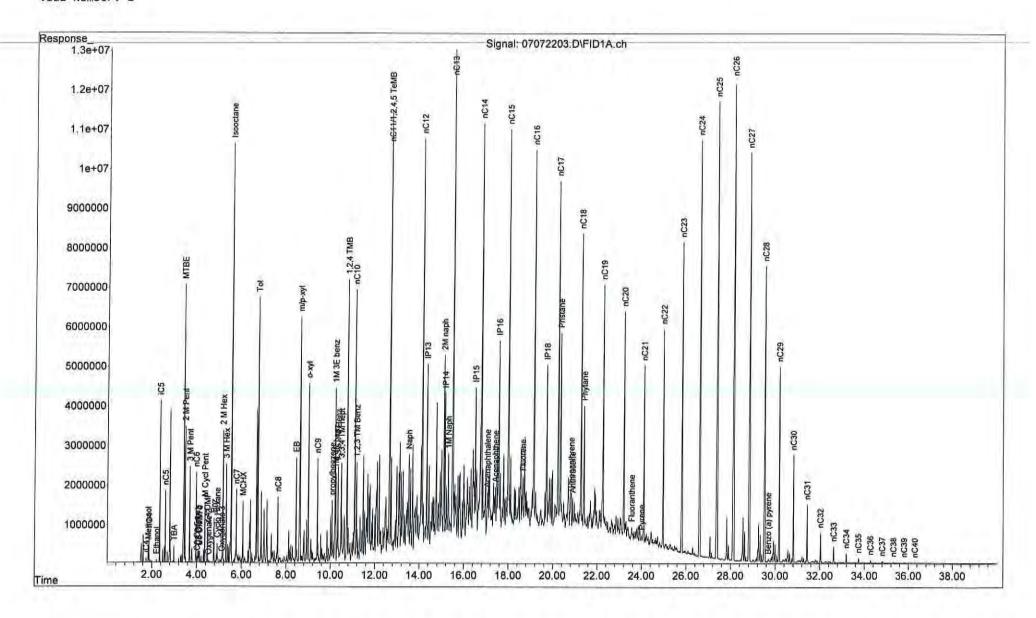




<	>
DAK	OTA

		LOD-BH-8MIP.MHP
Company:	Operator:	Date:
Dakota Technologies	A. Nagle	6/15/2022
Project ID:	Client:	Location:
0118.2022	REDI	Wood River, IL

APPENDIX B GC/FID Results


File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072203.D

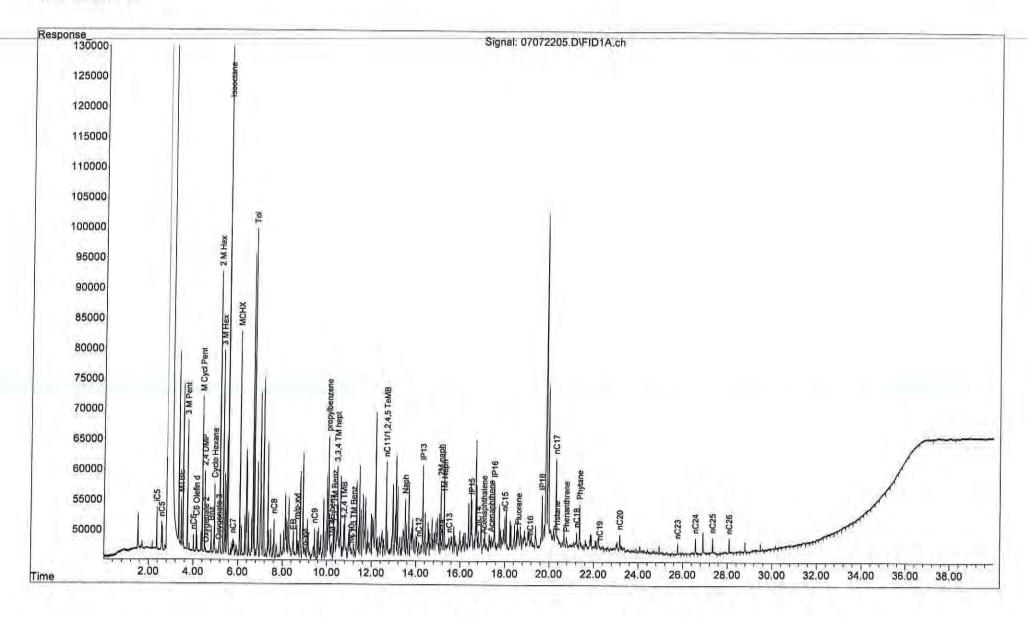
Operator : CR

Acquired : 07 Jul 2022 08:46 am using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: STD Misc Info : Vial Number: 2

STANDARD

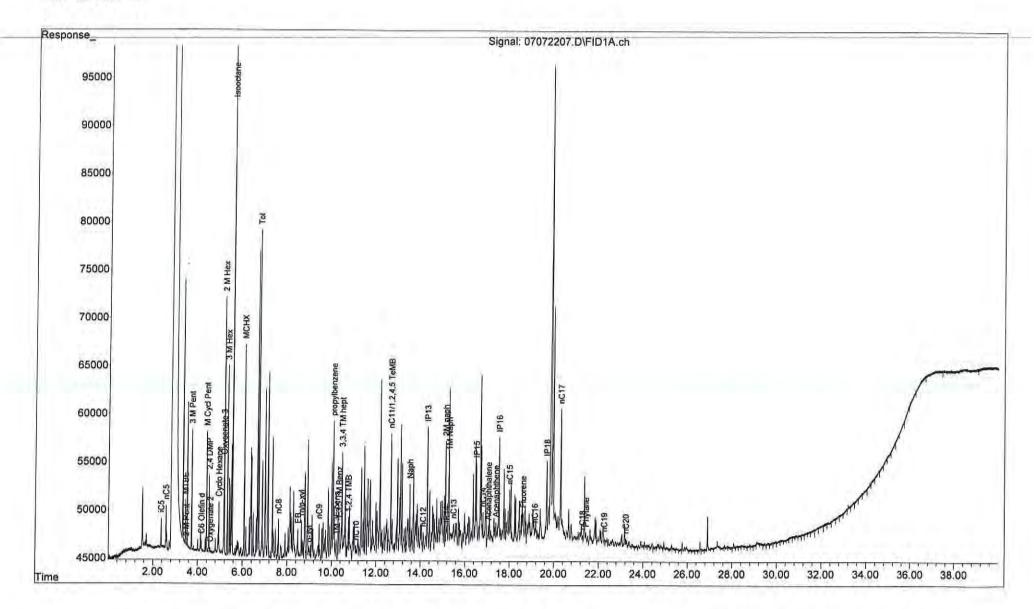
File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072205.D


Operator : CR

Acquired : 07 Jul 2022 09:52 am using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-01

Misc Info : Vial Number: 10

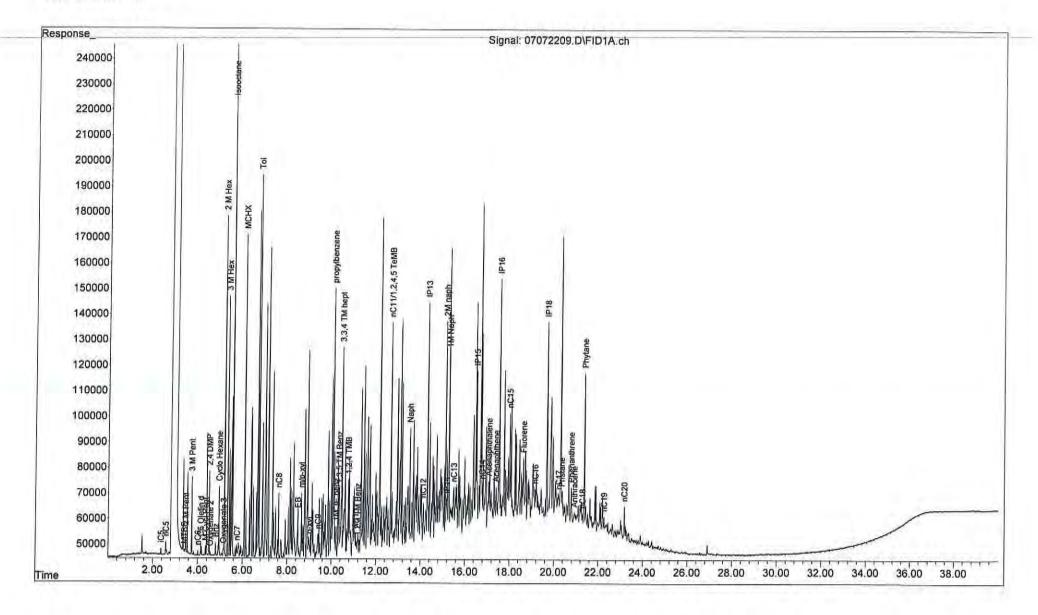

File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072207.D

Operator : CR

Acquired : 07 Jul 2022 10:58 am using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-02

Misc Info : Vial Number: 11 LOD-BH-1 (20-21)

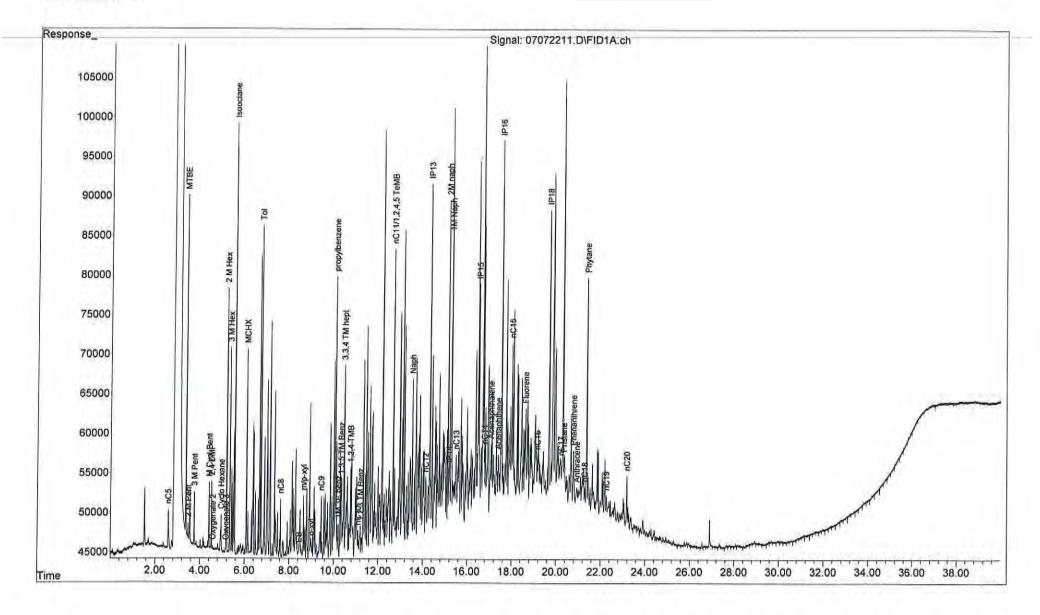

File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072209.D

Operator : CR

Acquired : 07 Jul 2022 12:04 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-03

Misc Info : Vial Number: 12 LOD-BH-3 (16-17)

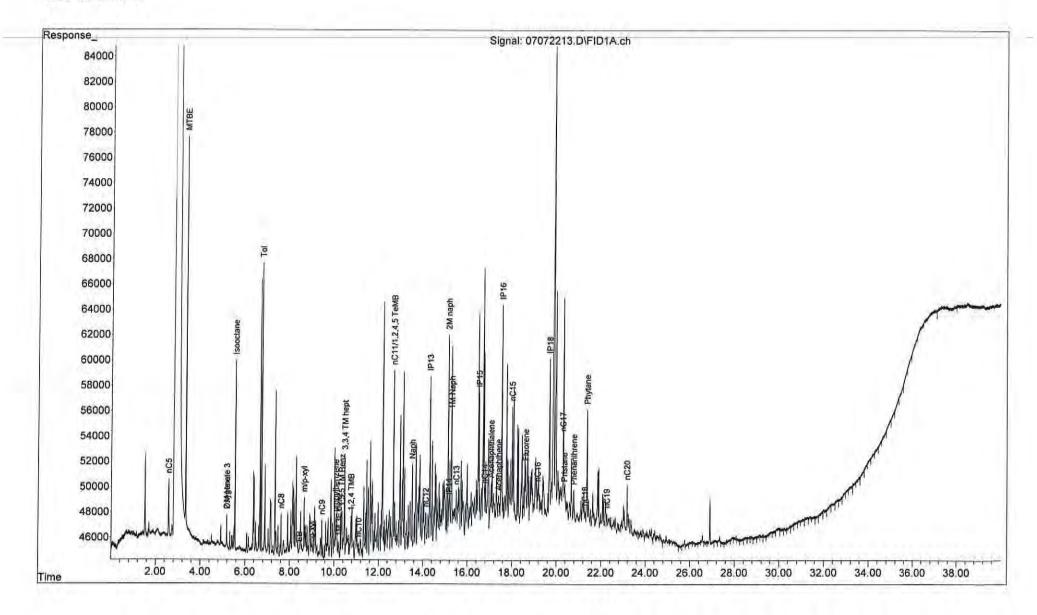

File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072211.D

Operator : CR

Acquired : 07 Jul 2022 01:10 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-04

Misc Info : Vial Number: 13 LOD-BH-3 (21-22)

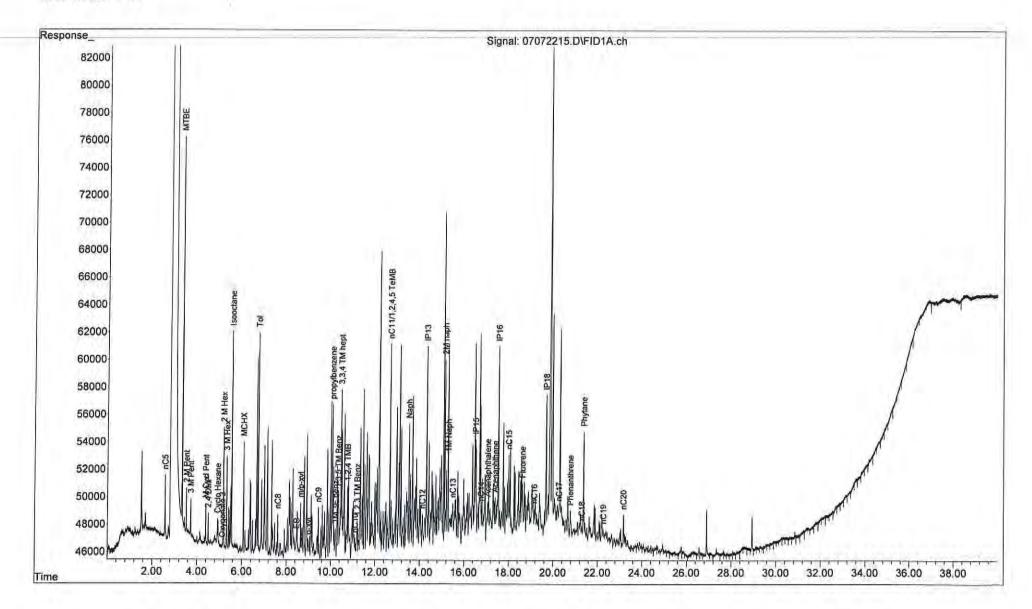

File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072213.D

Operator : CR

Acquired : 07 Jul 2022 02:16 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-05

Misc Info : Vial Number: 14 LOD-BH-4 (14-15)

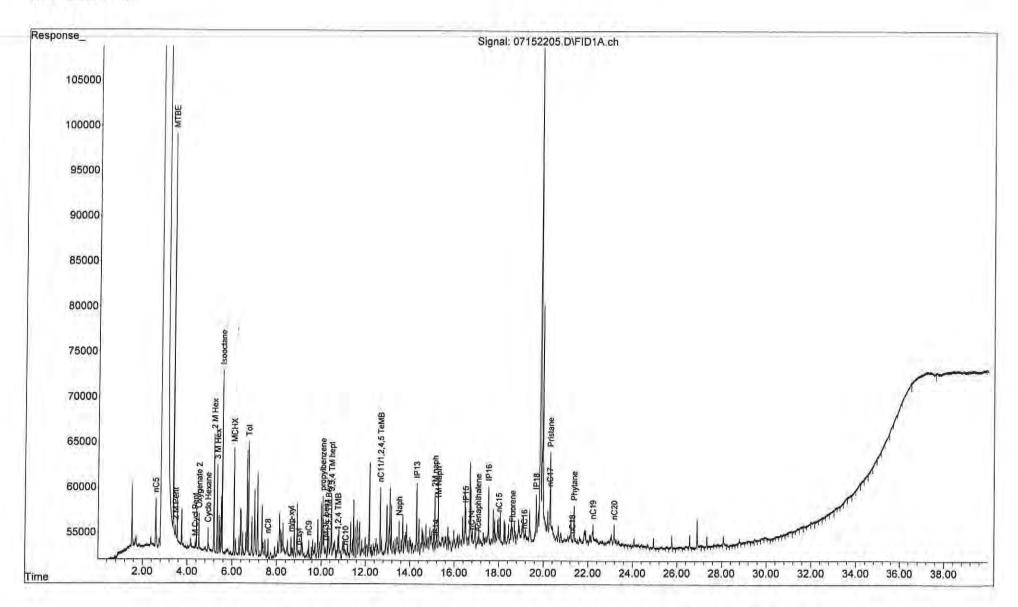

File :0:\Organics 1 on Alexandria\Tulsa TPH\070722\07072215.D

Operator : CR

Acquired : 07 Jul 2022 03:22 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-06

Misc Info : Vial Number: 15 LOD-BH-4 (20)

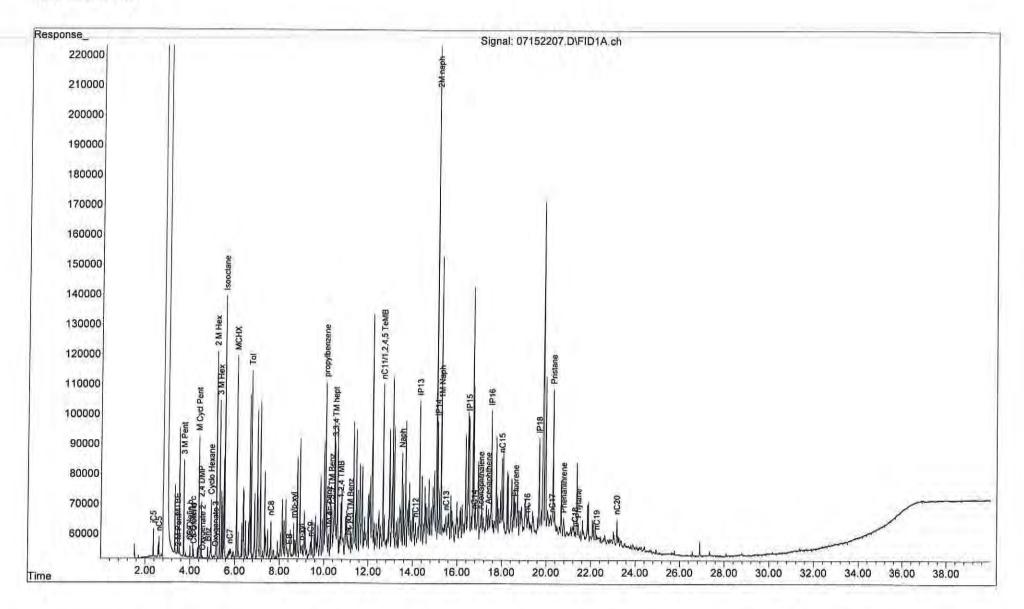

File :0:\Organics 1 on Alexandria\Tulsa TPH\071522\07152205.D

Operator : CR

Acquired : 15 Jul 2022 09:34 am using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-07

Misc Info : Vial Number: 16 LOD-BH-5 (16-17)

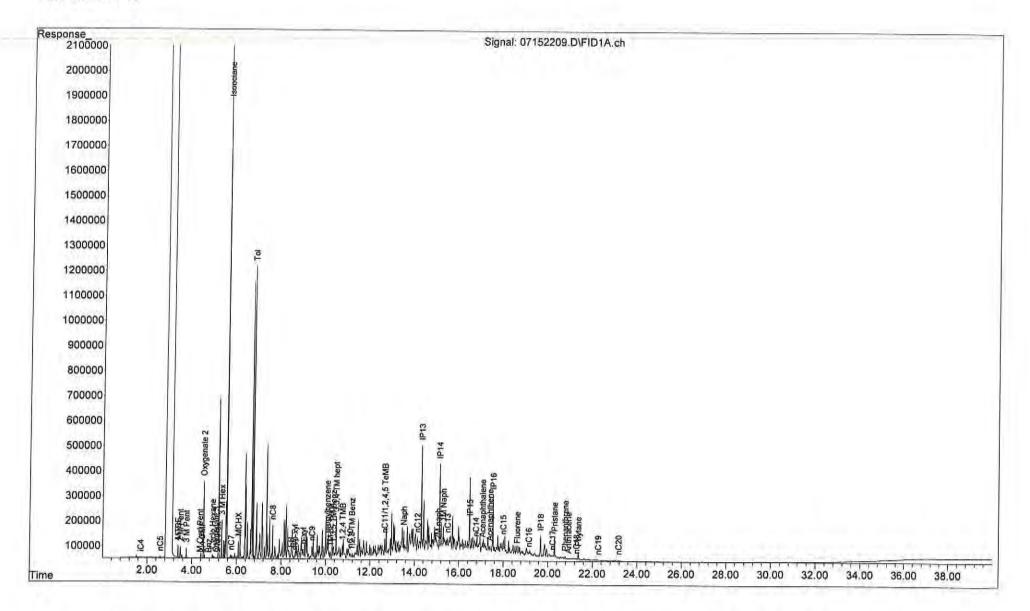

File :0:\Organics 1 on Alexandria\Tulsa TPH\071522\07152207.D

Operator : CR

Acquired : 15 Jul 2022 10:58 am using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-08

Misc Info : Vial Number: 17 LOD-BH-5 (24)


File :0:\Organics 1 on Alexandria\Tulsa TPH\071522\07152209.D

Operator : CR

Acquired : 15 Jul 2022 12:05 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-09

Misc Info : Vial Number: 18 LOD-BH-6 (18-20)

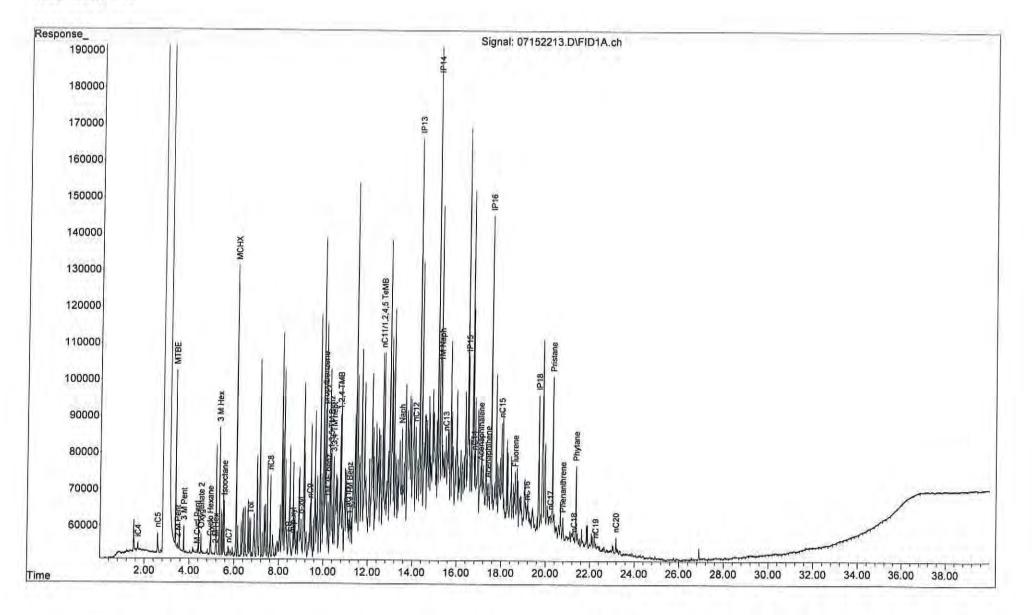
:0:\Organics 1 on Alexandria\Tulsa TPH\071522\07152211.D File


Operator

Acquired : 15 Jul 2022 01:11 pm using AcqMethod TPHSplit.M

Instrument : 8890 Sample Name: EF30030-10

Misc Info : Vial Number: 19


File :0:\Organics 1 on Alexandria\Tulsa TPH\071522\07152213.D

Operator : CR

Acquired : 15 Jul 2022 02:17 pm using AcqMethod TPHSplit.M

Instrument: 8890 Sample Name: EF30030-11

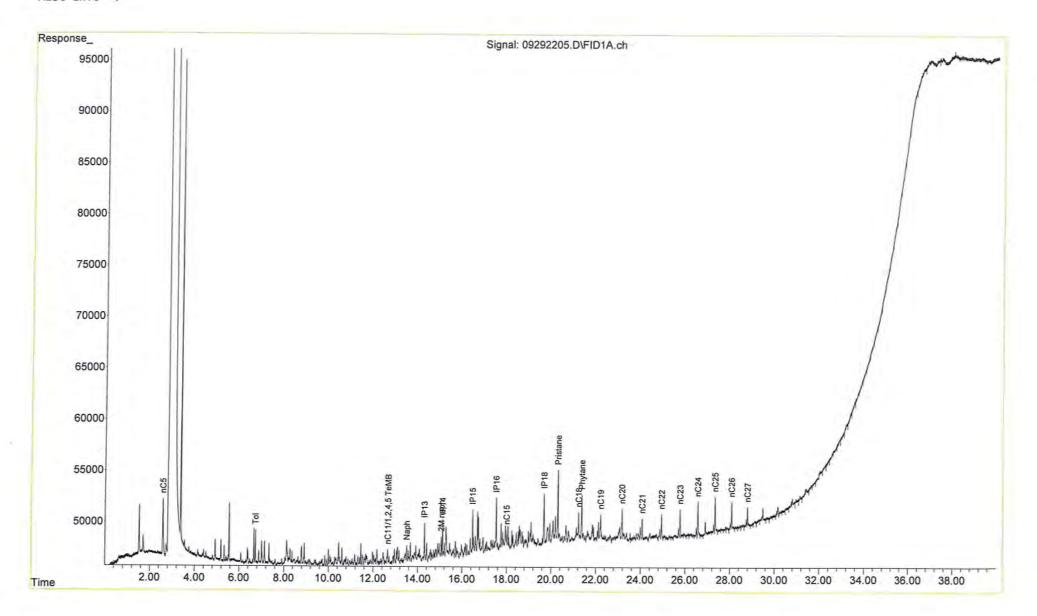
Misc Info : Vial Number: 20 LOD-BH-7 (19-20)

2026-001**

File

:0:\Organics 1 on Alexandria\Tulsa TPH\Tulsa TPH September 20

... 22\092922\09292205.D


Operator : CR Instrument : 8

8890

Acquired : 29 Sep 2022 09:41 am using AcqMethod TPHSplit.M

Sample Name: EI22042-01

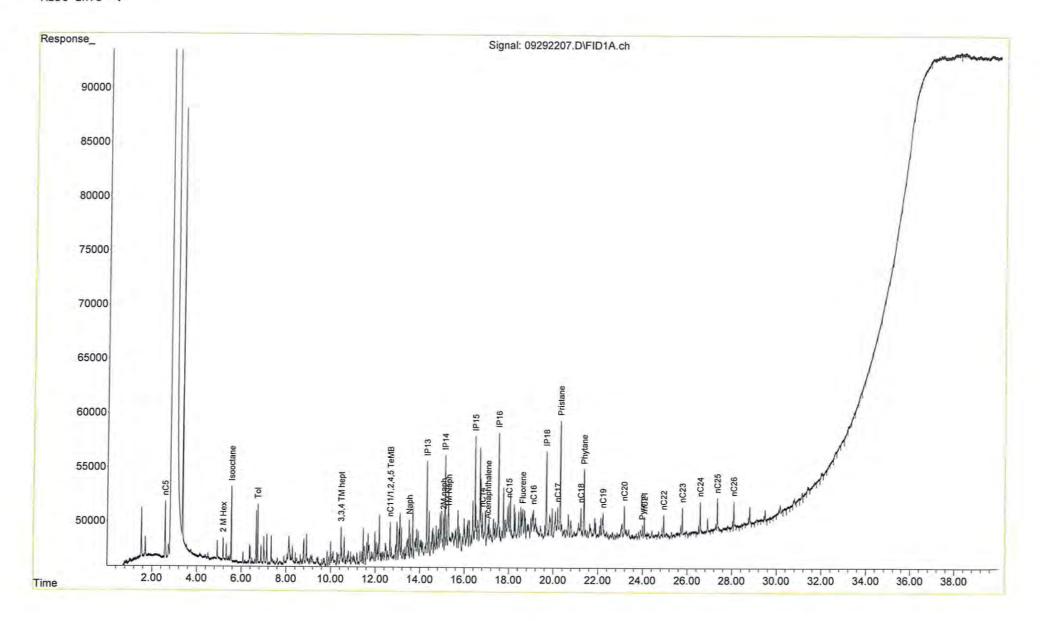
Misc Info :

2026-001**

File

:0:\Organics 1 on Alexandria\Tulsa TPH\Tulsa TPH September 20

... 22\092922\09292207.D


Operator : CR

Instrument: 8890

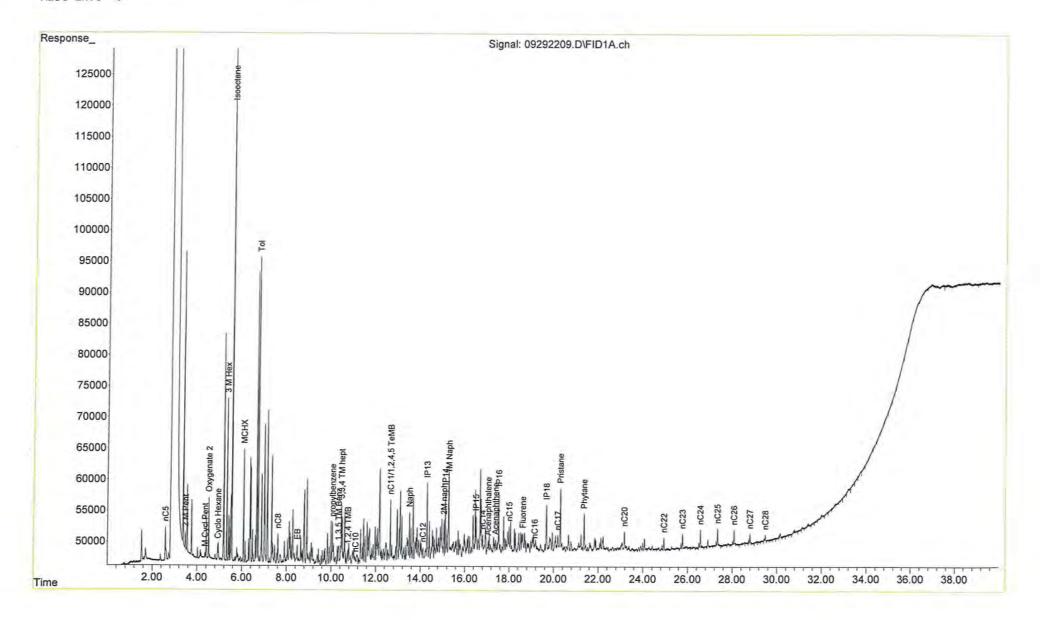
Acquired : 29 Sep 2022 10:47 am using AcqMethod TPHSplit.M

Sample Name: EI22042-02

Misc Info :

(24)

File :0:\Organics 1 on Alexandria\Tulsa TPH\Tulsa TPH September 20


... 22\092922\09292209.D

Operator : CR Instrument : 8890

Acquired : 29 Sep 2022 11:53 am using AcqMethod TPHSplit.M

Sample Name: EI22042-03

Misc Info :

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** Appendix B GCFID Response Area Table

		STD	I OD-BH-1 (17-18)	I OD-BH-1 (20-21)	LOD-BH-3 (16-17)	I OD-BH-3 (21-22)	I OD-BH-4 (14-15)	LOD-BH-4 (20)	LOD-BH-5 (16-17)	LOD-BH-5 (24)	LOD-BH-6 (18-20)	I OD-BH-7 (13-14)	I OD-BH-7 (19-20)
Chromatogram ID	Compound Name		Target Response		Target Response	Target Response		Target Response			Target Response		
	, , , , , , , , , , , , , , , , , , ,			<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>		,	<u> </u>	<u></u>				
iC4	Isobutane	1040578.027	0	0	0	0	0	0	0	0	56731	0	35904.56
Methanol	Methanol	4992714.325	0	0	0	0	0	0	0	0	0	0	0
nC4	Butane	6759597.732	0	0	0	0	0	0	0	0	0	0	0
Ethanol	Ethanol	701718.536	0	0	0	0	0	0	0	0	0	0	0
iC5	Isopentane	34803814.72	71675.412	31485.866	27265.063	0	0	0	0	87247	0	0	0
	Pentane	15986725.37	70963.076	60344.14	78978.07	98996.15	76192.75	62174	116465.25	68371.63	121588.775	56749.154	121838.663
	Oxygenate 1	3949371.152	0	0	0	0	0	0	0	0	0	0	0
	MtBE	70505227.39	87428.855	47656.179	11202.959	406171.097	291865.812	266598.063	423853.343	112652.025	465233.73	17971.6	
2 M Pent	2-Methylpentane	32739340.22	0	2413.269	104376.971	23777.212	0	33262.75	16002.481	7930.865	660345.766		
	3-Methylpentane	23915092.11	229154.146	130402.479	339388.125	83236.75	0	29098.25	0	324257.969	519537.071	71725.188	95524.688
	Hexane	23210908.65	31878.812	0	23998.791	0	0	0	0	42986.714	0	0	0
	C6 Olefin	1800693.757	0	0	0	0	0	0	0	0	0	0	0
	C6 Olefin	3006238.01	0	0	0	0	0	0	0	42986.714	0	0	0
	C6 Olefin	3913351.484	0	0	0	0	0	0	0	57068.046	0	0	0
	C6 Olefin	2955687.974	50834.208	13388.687	55646.735	0	0	0	0	28980.855	0	0	0
	Methyl cyclopentane	16267125.63	277643.697	134627.983	36646.349	94398.75	0	31097.259	6335.912	422955.25	12882.376	106594.428	
	2,4-Dimethylpentane	8735809.432	140177.724	83278.107	346566.475	91754.242	0	23610.75	0	190626.5	9895.56	36847.775	
	Oxygenate 2	750472.619	7330.51	5771.764	22588.756	6856.852	0	0	42561.5	10281.567	3281103.987	0	62009.246
Bnz	Benzene	14250204.63	59746.136	0	68511.491	0	0	0	0	47367.563	9481.436		0
*	Cylcohexane	6696521.77	135860.739	61910.579	312925.076	58701.45	0	22320.248	35287.2	222457.728	178873.587	23641.009	40950.847
	Oxygenate 3	1615302.584	13678.4	6582.824	25520.175	5055.1	33817.633	3153.1	0	20177.677	44946.204	0	0
	2-Methylhexane	40421138.11	592527.717	345788.82	1697694.032	431673.9	32855.84	112378	166897.824	881404.457	33690.291	208233.254	
3 M Hex	3-Methylhexane	27111596.35	354212.5	205530.25	1065081.491	277298.508	0	69361.277	103716.597	551411.125	1600018.031	209458.644	
Isooctane	Isooctane	135897175.3	896183.706	574527.844	2123186.489	597659.848	160747.302	170680.451	221373.582		22168931.1	90825.594	
	Heptane	22059243.87	31096.107	0	43842.255	0	0	0	0	31547.926	138623.587	0	21003.801
	Methylcyclohexane	19475399.21	440741.25	263140.25	1476551.894	311188.814	0	96177.75	139701.149		874870.437	506371.188	
Tol	Toluene	105271450.1	624375.802	391983.709	1728746.707	478565.773	261204.375	183780.757	146506.002		13074603.25	77690.906	
	Octane	23669793.48	103055.7	63764.208	332666.917	97335.75	39045.602	45459.355	24239.875	190437.616	1643163.785		
	Ethylbenzene	34052482.07	21801.923	50041.01	120830.309	11176.102	4128.374	7604.928	0	36875.945	279879.951	24108.856	
	m/p-Xylene	124790515	59092.778	42486.824	317280.93	90769.262	58712.035	41402.541	22356.632	136079.241	167325.122		
	o-Xylene	59886482.83	9341.616	12290.956	110733.64	28732.544	19616.736	16809.996	7476.443		695030.118	104143.855	
nC9	Nonane	31337105.22	69022.494	49178.44	105199.36	103058.366	39500.505	47264.267	24669.25	65291.136	436609.674	97781.613	
propylbenzene	n-Propylbenzene	21031371.71	280096.48	181740.692	1403942.572	478526.917	46710.24	160276.9	89814.816	803292.736	1440925.868	348401.58	
1M 3E benz	1-methyl-3-ethylbenz	57763492.96	63236.19	46515.292	279940.505	97724.956	28600.015	46177.312	27915.408		588377.53	144301.328	295742.934
1M 4E benz	1-Methyl-4-ethylbenz	23882851.58	65994.784	0	0	0	0	0	0	174154.772	0	0	0
	1,3,5-Trimethylbenze	31015169.67	73967.965	50988.875	375466.626	144320.648	45558.681	64918.164	30014.827	219146.48	640377.097	189955.324	
	3,3,4- Trimethylhepta	41281405.79	248108.909	179760.388	1312979.142	414517.389	144746.056	196180.65	101309.609		2572501.121	181647.472	
	1,2,4-Trimethylbenze	108721272.1	81179.98	59388.108	464562.59	175051.632	50925.436	67976.9	24076.226		892461.75		
	Decane	93512108.96	22717.512	16483.164	120682.567	43792.449	13779.38	14275.005	7580.378		298051.98		
	1,2,3-Trimethylbenze	33027513.31	52889.377	160710 051	0=001100	91346.02	0	48910.547	00470 704	46846.92	162950.205		
nC11/1,2,4,5 TeMB		173084044.2	198178.996	162712.251	1147901.576	496650.432	182368.675	207987.356	92472.761	691832.13	1029161.748		
	Napthalene	44342249.19	116515.95	89101.704	570056.366	258713.607	82063.225	113879.62	45983.626		1259330.174	179107.639	
	Dodecane C13 Japanenaid	171677447.5 66993993.22	58461.537	45442.454	348009.774	190712.77	65826.976	60003.043	111170 00	197696.308	1497374.686 5445683.493		
	C13 Isoprenoid	79460854.54	221295.391 145652.388	185983.083 132834.787	1326725.9 988482.941	647333.98 483702.772	204465.158 188327.732	211026.738 162025.958	114470.93 77446.329		327661.228	758406.676 144820.887	
	2-Methylnapthalene												
	C14 Isoprenoid	44191800.92	30427.672	28154.204	184286.704	90816.728	45407.948	0	12802.948		4192734.339		
1M Naph	1-Methylnapthalene	38811169.42	32831.689	30290.392	227712.176	121586.468	44677.116	30664.021	16625.818		1348797.273		
nC13 IP15	Tridecane	224935359.5 51875541.52	84863.166 117018.524	44349.959 115619.2	262793.457 878157.88	275182.362 406453.064	94053.111 148263.121	71099.381 95134.019	57847.031	213451.817 555339.867	940144.427 213724.56		
	Farnesane												
nC14	Tetradecane	209345299	36730.328	35091.781	239840.111	114609.276	38115.741	30352.924	13153.946		773381.526		
	Acenapthalene	19269656.17	40977.4	30471.76	303255.745	145467.581	54105.647	37666.501	16105.552		653881.309		
	Acenapthene	17758285.99	37060.324	27228.178	226847.43	100236.407	40069.916	38728.601	04750.004	110022.262	508969.001	94648.458	
	C16 Isoprenoid	80386358.97	169841.04	152155.179	1454804.14	658764.975	240525.408	197260.796	94759.064	617330.655	3001711.672		
nC15	Pentadecane	184641754.5	76795.348	76602.641	691975.837	336173.801	126191.375	84273.305	39329.49		930201.519		
	Fluorene	31947536.84	76307.79	77978.31	560453.758	268863.221	108795.25	87617.181	31905.516		157160.404	173937.405	
nC16	Hexadecane	169548271.5	14841.755	9897.008	185833.103	76958.693	30386.288	20812.2	9261.76	80916.678	264155.444	45126.809	101944.944

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** Appendix B GCFID Response Area Table

15.40	The second	00000017.00	445504.000	4000=0.004	4450000 500	22227 722	0.40004.450	105501.000		222247.252	4000700 077	054000.05	201157 212
IP18	Norpristane	80200047.26	145731.008	133259.331	1450668.526	686897.583	249964.456	185594.663	79473.156	608247.356	1632792.975	351336.37	694457.812
nC17	Heptadecane	152287287.9	237593.359	218405.432	150007.315	57691.797	18285.574	15994.824	18902.284	40168.752	175250.536	25084.504	71567.618
Pristane	Pristane	96626460.47	7216.808	0	143581.48	61493.122	19764.621	0	159632.23	802077.987	1358577.384	365899.385	690447.335
Phenanthrene	Phenanthrene	11338059.1	45126.438	0	379743.609	195046.528	58962.187	56044.91	0	181462.572	302844.56	68586.788	155173.418
Anthracene	Anthracene	12954462.65	0	0	181800.569	87357.211	0	0	0	0	94094.322	0	0
nC18	Octadecane	123227669.7	44553.161	10237.566	126187.534	50994.055	19803.088	12468.544	7113.555	43647.704	55171.605	17974.916	34556.376
Phytane	Phytane	57750776.65	130409.054	23211.133	1081299.202	521675.064	162926.629	128432.463	78609.224	109058.388	611929.273	189407.3	390621.826
nC19	Nonadecane	103222791.5	11562.837	12418.789	128543.274	51242.205	22036.424	17978.947	24313.635	57709.559	40007.051	12010.424	26442.655
nC20	Eicosane	90279583.72	45590	8929.12	238102.835	104665.192	67257.936	39394.178	34285.76	153453.05	84415.938	40916.063	75264.557
Fluoranthene	Fluoranthene	5682533.048	0	0	0	0	0	0	0	0	0	0	0
Pyrene	Pyrene	3013322.258	0	0	0	0	0	0	0	0	0	0	0
nC21	Heneicosane	65432263.25	0	0	0	0	0	0	0	0	0	0	0
nC22	Docosane	87724462.56	0	0	0	0	0	0	0	0	0	0	0
nC23	Tricosane	144747678.5	22400.429	0	0	0	0	0	0	0	0	0	0
nC24	Tetracosane	226261257.4	31364	0	0	0	0	0	0	0	0	0	0
nC25	Pentacosane	277872686.1	31669.839	0	0	0	0	0	0	0	0	0	0
nC26	Hexacosane	291761660.3	30846.964	0	0	0	0	0	0	0	0	0	0
nC27	Heptacosane	227052725.4	0	0	0	0	0	0	0	0	0	0	0
nC28	Octacosane	145446441.7	0	0	0	0	0	0	0	0	0	0	0
Benzo (a) pyrene	Benzo(a)pyrene	830431.862	0	0	0	0	0	0	0	0	0	0	0
nC29	Nonacosane	81424218.12	0	0	0	0	0	0	0	0	0	0	0
nC30	Tricontane	41040335.18	0	0	0	0	0	0	0	0	0	0	0
nC31	Hentriacontane	21512161.39	0	0	0	0	0	0	0	0	0	0	0
nC32	Dotriacontane	11301949.78	0	0	0	0	0	0	0	0	0	0	0
nC33	Tritriacontane	6092482.89	0	0	0	0	0	0	0	0	0	0	0
nC34	Tetratriacontane	3448230.225	0	0	0	0	0	0	0	0	0	0	0
nC35	Pentatriacontane	1954646.391	0	0	0	0	0	0	0	0	0	0	0
nC36	Hexatriacontane	1090165.766	0	0	0	0	0	0	0	0	0	0	0
nC37	Heptatriacontane	603948.812	0	0	0	0	0	0	0	0	0	0	0
nC38	Octatriacontane	349258.733	0	0	0	0	0	0	0	0	0	0	0
nC39	Nonatriacontane	238495.75	0	0	0	0	0	0	0	0	0	0	0
nC40	Tetracontane	169103.205	0	0	0	0	0	0	0	0	0	0	0
	Total		-			-	-	-		-	_		
	Chromatogram												
	Response	15,456,330,761	7,935,911,887	6,849,662,423	9,196,123,236	10,853,900,405	7,699,293,996	7,024,057,631	11,293,886,986	5,807,467,046	12,865,945,713	6,255,031,112	12,393,447,397
<u></u>	1100001100	. 0, 100,000,101	. 100010 1 11001	0,0 .0,002,720	<u> </u>	. 0,000,000,700	1,000,200,000	. 10= 1,001 ,001	1.1200,000,000	3,001,101,040	.=,000,010,1110	<u> </u>	. 2,000, 111,001

APPENDIX C Soil Boring Logs

							Bori	ing/Well ID		Well Installa	tion Information	
							L	OD-BH-1	Drill Method:	soil boring only	Screen Material	
									Drill Rig:		Screen Interval (ft bgs)	
							Drilling Co.:	REDI	Drilling Co.:		Filter Material	
Client	t:				_	Р	Drill Rig:	Geoprobe 7822DT	Foreman:		Filter Interval (ft bgs)	
Proje	ct:		Wood Riv	er Fo	rmer Refi	nery - LOD Investigation	Drill Method:	direct push	Start Date:		Annular Seal:	
Proje	ct Nu	umber:				133.02	Foreman:	Eric Wetzel	End Date:		Seal Interval (ft bgs)	
Locat	ion:				<u> </u>	Riverfront - LOD	Start Date:	6/28/2022	Bore Diamter (inch)		Pad Material:	
			Samp	ole In	formati	on	End Date:	6/28/2022	Borehole Depth (ft bgs)		Pad Interval (ft bgs)	
							Clear Method:	air knife	Well Diameter (inch)		Coordinate System:	
							End Clear:	6.5	Casing Material:		X Coordinate:	
							Ground Surface:		Casing Interval (ft bgs):		Y Coordinate:	
£	ч	_	Ħ		ime				Stickup or Flush:		TOC relative to Ground	
Start Depth	End Depth	PID (PPM)	Shake Test	Sample ID	Sample Time	Comment		Lithologic Description	on	Construction	Lithology	Sample Info
						Air knifed for UVOST						
0.0	6.5					investigation and backfilled						
0.0	0.5					with sand. No logging						
						completed.						
16.0	17.0	366.2	no sheen				(16-17) Silty clay; firm into grey; moist; odo	n; medium plasticity; no dilata or	ancy; light brown grading		CL_ML	
17.0	18.0	712	no sheen	3H-1 (:	0.48611		(17-18) Silt; soft; med	dium plasticity; no dilatancy; ¿	grey; moist; odor		ML	
18.0	19.0	603.9	no sheen				(18-19) Silt; soft; low	plasticity; no dilatancy; grey;	moist; odor		ML	
19.0	20.0	639.3	sheen				•	; soft; low plasticity; no dilata ately 2 inches from bottom	ancy; grey; wet; odor; 1/4 in		ML	
20.0	21.0	732.1	sheen	8H-1 (2	0.49306		(20-21) Poorly graded grey; wet; odor; hard	d sand with silt; subangular gr d transition at 20 feet	rains; weak cementation;		SP_SM	
21.0	22.0	760.8	no slheen	SH-1 (:	0.49653	heaving sands at 22		d sand with silt; subangular gr r; heaving sands at 22 feet	rains; weak cementation;		SP_SM	
END	0.0	END	END	END	END	END	(END-END) END				END	

					Во	ring/Well ID		Well Install	ation Information	
						LOD-BH-3	Drill Method:		Screen Material	
							Drill Rig:		Screen Interval (ft bgs)	
					Drilling Co.:	REDI	Drilling Co.:		Filter Material	
Clien	t:			ВР	Drill Rig:	Geoprobe 7822DT	Foreman:		Filter Interval (ft bgs)	
Proje	ect:		d River Forn	ner Refinery - LOD Investig	Drill Method:	direct push	Start Date:		Annular Seal:	
Proje	ect Nu	ımber:		BP050.133.02	Foreman:	Eric Wetzel	End Date:		Seal Interval (ft bgs)	
Loca	tion:	'		•	Start Date:	6/28/2022	Bore Diamter (inch)		Pad Material:	
		Sa	ample Info	ormation	End Date:	6/28/2022	Borehole Depth (ft bgs)		Pad Interval (ft bgs)	
					Clear Method:	air knife	Well Diameter (inch)		Coordinate System:	
					End Clear:	6.5	Casing Material:		X Coordinate:	
					Ground Surface:		Casing Interval (ft bgs):		Y Coordinate:	
돭	ج		st				Stickup or Flush:		TOC relative to Ground	
Dep	Depth	νρίν	е Те	nen						
Start Depth	End D	PID (PPM)	Shake Test	Comment		Lithologic Descript	ion	Constructio	n Lithology	Sample Info
∑.	ū	₫	ıs					 		
				Air knifed for UVOST				11 1 1		
0.0	6.5			investigation and backfilled				11 1 1		
				with sand. No logging completed.				11 1 1		
				completed.	(14-15) Silty clay: so	ft; medium plasticity; no dilat	ancy: light brown grading to	1111		
14.0	15.0	538.6	no sheen		grey; moist; odor	it, mediam plasticity, no unat	ancy, light brown grading to	11 1 1	CL_ML	
			no sneen			ft; medium plasticity; no dilat	ancy: light brown grading to	1111		
15.0	16.0	615.7	no sheen			ecomes more silty at bottom		11 1 1	CL_ML	
						v plasticity; no dilatancy; grey		11 1 1		
16.0	17.0	869.1	sheen		, , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	,,	11 1 1	ML	
					(17-18) Silt; soft; lov	v plasticity; no dilatancy; grey	; moist; odor	1111		
17.0	18.0	320.2	sheen			, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		11 1 1	ML	
10.0	10.0				(18-19) Silt; soft; lov	v plasticity; no dilatancy; grey	; moist; odor	11 1 1	0.41	
18.0	19.0	143.7	no sheen					11 1 1	ML	
10.0	20.0				(19-20) Sandy silt; se	oft; low plasticity; no dilatanc	y; grey; wet; odor; more of a	11 1 1	B 41	
19.0	20.0	644.1	no sheen		grading transition in	to sandier soil			ML	
					(20-21) Sandy silt; se	oft; medium plasticity; no dila	tancy; grey; wet; odor	1	D 41	
20.0	21.0	323.4	no sheen						ML	
21.0	22.0				(21-22) Silty sand; s	ubangular grains; weak ceme	ntation; grey; saturated;	1	CNA	
21.0	22.0	746.9	sheen	heaving sands at 22	odor; hard transition	n into sandy soil at 21 feet, he	eaving sands at 22 feet]	SM	
END	0.0	END	END	ENID	(END-END) END]	END	
		END	END	END]		

					Bori	ng/Well ID		We	ell In	stalla	tion Information	
					LC	DD-BH-4	Drill Method:	soil	borin	g only	Screen Material	
							Drill Rig:				Screen Interval (ft bgs)	
					Drilling Co.:	REDI	Drilling Co.:				Filter Material	
Clien	t:				Drill Rig:	Geoprobe 7822DT	Foreman:				Filter Interval (ft bgs)	
Proje	ect:	,	d River Forn	ner Refinery - LOD Investig	Drill Method:	direct push	Start Date:				Annular Seal:	
•		ımber:		BP050.133.02	Foreman:	Eric Wetzel	End Date:				Seal Interval (ft bgs)	
Locat	tion:			- ,	Start Date:	6/28/2022	Bore Diamter (inch)				Pad Material:	
		S	ample Info	ormation	End Date:	6/28/2022	Borehole Depth (ft bgs)				Pad Interval (ft bgs)	
					Clear Method:	air knife	Well Diameter (inch)				Coordinate System:	
					End Clear:	6.5	Casing Material:				X Coordinate:	
					Ground Surface:		Casing Interval (ft bgs):				Y Coordinate:	
ţ	ج	=	st				Stickup or Flush:				TOC relative to Ground	
Рер	Depth	ΡΫ́	е Те	nen						_		
Start Depth	End D	PID (PPM)	Shake Test	Comment		Lithologic Descript	ion	Con	stru	ction	Lithology	Sample Info
Ċ	ш	Δ_		Air knifed for UVOST				Н	T	П		
				investigation and backfilled								
0.0	6.5			with sand. No logging								
				completed.								
13.0	14.0	CO F									CL ML	
		69.5			(4.4.45) Cili. ala		and the second s	41			<u> </u>	
14.0	15.0			sand in boot of liner		; medium plasticity; no dilather the contraction ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	tancy; grey; moist; odor;				CL_ML	
		355.2	sheen		Sand in boot of liner,	neaving sands at 15 leet					<u> </u>	
				NR, encountered heaving	(15-17) no recovery							
15.0	17.0			sands at 15 ft right at							no recovery	
13.0	17.0			interface of clay/sand.							110 recovery	
				,,				41				
				NR due to heaving sands.	(20-20) no recovery							
20.0	20.0			However, end cap at 20 ft								
20.0	20.0			had some sand and and							no recovery	
		22/LQ	nt oil feel on l	maybe some residual oil.								
		224.0	it on leer off		(END-END) END			$\{ \ \ \ $				
END	0.0	END	END	END	(LIVO-LIVO) LIVO						END	

					Bor	ing/Well ID	1	We	II Installa	tion Information	
					L	.OD-BH-5	Drill Method:	soil l	boring only	Screen Material	
							Drill Rig:			Screen Interval (ft bgs)	
					Drilling Co.:	REDI	Drilling Co.:			Filter Material	
Clien	t:			ВР	Drill Rig:	Geoprobe 7822DT	Foreman:			Filter Interval (ft bgs)	
Proje	ct:	Ċ	od River Forme	er Refinery - LOD Investiga	Drill Method:	direct push	Start Date:			Annular Seal:	
Proje	ct Nu	ımber:		3P050.133.02	Foreman:	Eric Wetzel	End Date:			Seal Interval (ft bgs)	
Locat	tion:	•	Wood Rive	er, IL - Riverfront - LOD	Start Date:	6/28/2022	Bore Diamter (inch)			Pad Material:	
		;	Sample Infor	rmation	End Date:	6/28/2022	Borehole Depth (ft bgs)			Pad Interval (ft bgs)	
					Clear Method:	air knife	Well Diameter (inch)			Coordinate System:	
					End Clear:	6.5	Casing Material:			X Coordinate:	
					Ground Surface:		Casing Interval (ft bgs):			Y Coordinate:	
두	ا ء ا	_	ts				Stickup or Flush:			TOC relative to Ground	
Start Depth	End Depth	PID (PPM)	Shake Test	Comment							
tart	o pu	ID (F	hake	omr		Lithologic Descrip	tion	Con	struction	Lithology	Sample Info
Ś	Ш	Ь	S						1 1 1		
				Air knifed for UVOST							
0.0	6.5			investigation and backfilled with sand. No logging							
				completed.							
				completed.	(16-17) Poorly grade	d sand with silt; subangular	grains: weak cementation:				
16.0	17.0				, , , ,	•	nly retreived 16-17 out of the			SP SM	
10.0	17.0	294.5	no sheen	slight heaving encountered in sands 16-20	16-20 interval.	,	,			31 _3141	
		254.5	no sneen	III 3d11d3 10-20	(17-18) no recovery						
17.0	18.0			NR due to heaving sands.	(17-18) NO TECOVERY					no recovery	
				Title dae to fleaving sailas.	(18-19) no recovery						
18.0	19.0			NR due to heaving sands.	(10 13) 110 10000019					no recovery	
				Title due to ficaving sarius.	(19-20) no recovery						
19.0	20.0			NR due to heaving sands.	(13-20) 110 recovery					no recovery	
			oily feel on	However, liner tip at 24 ft	(24-24) no recovery						
24.0	24.0	142.4	liner	had oil residue.	(27 27) HOTECOVERY					no recovery	
		172.7	mici	naa on residue.	(END-END) END						
END	0.0	FND	FND	FND	(LIND-LIND) LIND					END	
		END	END	END							

					Bori	ing/Well ID		Wel	l Instal	lati	on Information	
					L	OD-BH-6	Drill Method:	soil b	oring onl	ly S	Screen Material	
							Drill Rig:			9	Screen Interval (ft bgs)	
					Drilling Co.:	REDI	Drilling Co.:			F	Filter Material	
Clien	it:			ВР	Drill Rig:	Geoprobe 7822DT	Foreman:			F	Filter Interval (ft bgs)	
Proje	ect:		d River Forn	ner Refinery - LOD Investig	Drill Method:	direct push	Start Date:			,	Annular Seal:	
Proje	ect Nu	umber:		BP050.133.02	Foreman:	Eric Wetzel	End Date:				Seal Interval (ft bgs)	
Locat	tion:			•	Start Date:	6/28/2022	Bore Diamter (inch)				Pad Material:	
		S	ample Info		End Date:	6/28/2022	Borehole Depth (ft bgs)				Pad Interval (ft bgs)	
					Clear Method:	air knife	Well Diameter (inch)				Coordinate System:	
					End Clear:	6.5	Casing Material:			_	K Coordinate:	
					Ground Surface:		Casing Interval (ft bgs):				Y Coordinate:	
ţ	بي	_	st				Stickup or Flush:			1	TOC relative to Ground	
Dek	Jept	PPIV	е Те	men		Chlorio do Borrelo	•	6				
Start Depth	End Depth	РІБ (РРМ)	Shake Test	Comment		Lithologic Descript	ion	Cons	tructio	n	Lithology	Sample Info
0.0	6.5	1	i	Air knifed for UVOST investigation and backfilled with sand. No logging completed.								
16.0	18.0	112		soil compressed about 50%	black staining; moist; speckels in interior, s	n sand; soft; medium plastici odor; black staining on ext oil compressed about 50%	• • • • • • • • • • • • • • • • • • • •				CL_ML	
18.0	20.0	919.6		soil compressed about 50%	of a silty clay with son bottom, soil compres	me sand and transitions to a	tancy; grey; wet; odor; more silt-sand mix towards				ML	
END	0.0	END	END	END	(END-END) END						END	

						ing/Well ID OD-BH-7	Drill Method: Drill Rig:		tion Information Screen Material Screen Interval (ft bgs)	
Clien Proje Proje Locat	ct: ct Nu	ımber:		BP ner Refinery - LOD Investig BP050.133.02 ver, IL - Riverfront - LOD	Foreman: Start Date: End Date:	REDI Geoprobe 7822DT direct push Eric Wetzel 6/28/2022 6/28/2022	Drilling Co.: Foreman: Start Date: End Date: Bore Diamter (inch) Borehole Depth (ft bgs)		Filter Material Filter Interval (ft bgs) Annular Seal: Seal Interval (ft bgs) Pad Material: Pad Interval (ft bgs)	
Start Depth	End Depth	PID (PPM)	Shake Test	Comment	Clear Method: End Clear: Ground Surface:	air knife 6.5 Lithologic Descript	Well Diameter (inch) Casing Material: Casing Interval (ft bgs): Stickup or Flush:	Construction	Coordinate System: X Coordinate: Y Coordinate: TOC relative to Ground Lithology	Sample Info
	6.5		IS	Air knifed for UVOST investigation and backfilled with sand. No logging completed.						
12.0	13.0	745.6	sheen		(12-13) Silty clay; fire grey; dry; odor	m; medium plasticity; no dila	tancy; light brown grading to		CL_ML	
13.0	14.0	822.1	no sheen			d; soft; low plasticity; no dilatrades out downward	tancy; grey; moist; odor;		ML	
14.0	15.0	353.3	no sheen		(14-15) Silt; soft; low	v plasticity; no dilatancy; grey	r; wet; odor		ML	
15.0	16.0		no sheen		(15-16) silt; soft; low	plasticity; no dilatancy; grey	r; wet; odor		ML	
16.0	17.0	198.6	no sheen		(16-17) silt; soft; low odor	plasticity; no dilatancy; grey	with brown noddules; wet;		ML	
17.0	18.0				(17-18) Silt with san	d; hard; low plasticity; no dila	atancy; grey; wet; odor		ML	
18.0	19.0		no sheen		(18-19) Silt with san	d; soft; low plasticity; no dila	tancy; grey; saturated; odor		ML	
19.0	20.0		sheen	heaving sands at 20 feet		ed sand with silt; subangular and similar to above then bo	=		SP_SM	
END	0.0	END	END	END	(END-END) END				END	

	(G	SC	OVEF	REIG	iN	Client:	bp Products North America Inc.		
		- 1111	CC	DVICI	IITI	NG INC	Project:	Light Oils Dock	─ LOD-I	P7_N1
		- 1111		nce. serv			Project Number:	BP050.138.01		2-01
		willow Im			rice. soil		Location:	Riverfront Property - Wood River, II	ation .	
Drilling Drill Rig Drill Me Driller:	Co.:	riller In	Dakota 1 Geoprok Direct Pr A. Sense	Fechnolog pe 6600 ush & HSA	A	Soil Boring In Start Date: End Date Clear Method: Clear Depth: Boring Depth: Surface Elevation Coordinate System: Latitude: Longitude:	9/14/2022 9/14/2022 Air Knife 6.5 30 422 WGS-84 38.851294 -90.109653	Well Information Bore Diameter (in): Well Depth (ft bgs): Well Diameter (in): Casing Material & Interval (ft bgs): Screen Material & Interval (ft bgs): Filter Material & Interval (ft bgs): Seal Material & Interval: Stickup or Flush: Install Date:	2 2 PVC / PVC / sand / Bentonit	7 2 0 - 22 22 - 27 21 - 27 e / 1 - 21 kup
			Samı	ple Info	rmatio	n				
Start Depth	End Depth	(MAA) OIA	Shake Test	Sample ID	Sample Time	Comment		Lithologic Description	Construction	Lithology
0.0	0.5					0-6.5: 5-10 ppm in open hole	(0-6.5) fill; clayey silt, g	gravel, wood, concrete, asphalt, and sand		fill
0.5	1.0									fill
1.0	1.5									fill
1.5	2.0									fill
2.0	2.5									fill
2.5	3.0									fill
3.0	3.5									fill
3.5	4.0									fill
4.0	4.5									fill
4.5	5.0									fill
5.0	5.5									fill
5.5	6.0									fill
6.0	6.5						(6.5.0) 5			fill
6.5	7.0						(6.5-9) Fat clay; high pl	lasticity; dark grey; dry		СН
7.0	7.5									СН
7.5	8.0	230								СН
8.0	8.5									СН
8.5	9.0						(0.40) Silter 1	and the state of t		СН
9.0	9.5						(9-10) Slity clay; mediu	ım plasticity; dark grey; dry		CL_ML
9.5	10.0	260					(10.11) Silty clays no ad-	ium plasticity; dark grey; moist		CL_ML
10.0	10.5						(10-11) Silly Clay; medi	um prosticity, uark grey, moist		CL_ML
10.5	11.0						(11-14) Silt with cand	low plasticity; olive grey; moist; trace clay		CL_ML
11.0	11.5						(11 17) SIIL WILLI SAIIQ;	now productly, onese giey, moist, trace cidy		ML
11.5	12.0	281								ML
12.0	12.5									ML
12.5	13.0									ML
13.0	13.5									ML
13.5	14.0						(14-15) Lean clay; plast	ticity; dark grey; moist		ML
14.0	14.5	397					,, plast	,,		CL
14.5	15.0									CL

			Sam	ole Info	rmatio	1			
Start Depth	End Depth	(Mad) Old	Shake Test	Sample ID	Sample Time	Comment	Lithologic Description	Construction	Lithology
15.0	15.5		<u> </u>	Š	Š		(15-16.5) Silty sand; weak cementation; grey; wet; trace clay, fine-grained sand		SM
15.5	16.0								SM
16.0	16.5	178							SM
16.5	17.0						(16.5-20) Fat clay; plasticity; dark grey; moist		СН
17.0	17.5								СН
17.5	18.0								СН
18.0	18.5								СН
18.5	19.0								СН
19.0	19.5								СН
19.5	20.0	270							СН
20.0	20.5						(20-23.5) Silt; low plasticity; dark grey; moist; (clayey silt)		ML
20.5	21.0								ML
21.0	21.5								ML
21.5	22.0								ML
22.0	22.5								ML
22.5	23.0	385							ML
23.0	23.5								ML
23.5	24.0						(23.5-29.5) Poorly graded sand with silt; weak cementation; wet; fine-grained sand		SP_SM
24.0	24.5								SP_SM
24.5	25.0	280							SP_SM
25.0	25.5								SP_SM
25.5	26.0								SP_SM
26.0	26.5								SP_SM
26.5	27.0	140							SP_SM
27.0	27.5								SP_SM
27.5	28.0								SP_SM
28.0	28.5								SP_SM
28.5	29.0	380							SP_SM
29.0	29.5								SP_SM
29.5	30.0						(29.5-30) Lean clay; dark grey; wet; some silt		CL
Notes: Remark	s:	times an	fication li	nes repre	esent app	Fluctuations of groundwate	Key: Cemei Groi Bentonii Sar Sare Scree Rise en soil types and the transition may be gradual. Water level readings were complete or may occur due to factors other than those present at the time measurements were force sed to a isolations at the same may occur due to factors other than those present at the time measurements were force sed to a isolations of a scaled to select the same of	er er made.	Fill / Other Gravel Sand Silt Clay Bedrock
Remark	s:	6) 1) Stratifitimes and 2) Field to a photoi	nd under of testing va onization	condition lues repr detector	s stated. esent tot with a 1	Fluctuations of groundwate al volatile organic vapors (re D.6 Ev lamp and set to a refe	Riss en soil types and the transition may be gradual. Water level readings were complete	er d at e made. mple with	

	(SC	OVEF	REIG	N	Client:	bp Products North America Inc.		
			CC	ISING	IITI	NGINC	Project:	Light Oils Dock		PZ-02
				ice. serv			Project Number:	BP050.138.01		2-02
		villar In			ice. soil		Location:	Riverfront Property - Wood River, II Well Informatio		
Drilling Drill Rig Drill Me Driller:	Co.:	riller in	Geoprob Direct Po A. Sense	Fechnolog oe 6600 ush & HS <i>A</i>	A	Soil Boring In Start Date: End Date Clear Method: Clear Depth: Boring Depth: Surface Elevation Coordinate System: Latitude: Longitude:	9/14/2022 9/14/2022 Air Knife 6.5 25 422 WGS-84 38.851269 -90.109661	Bore Diameter (in): Well Depth (ft bgs): Well Diameter (in): Casing Material & Interval (ft bgs): Screen Material & Interval (ft bgs): Filter Material & Interval (ft bgs): Seal Material & Interval: Stickup or Flush: Install Date:	2 2 PVC / PVC / sand / Bentonit	5 8 2 0 - 23 23 - 28 22 - 28 e / 1 - 22 kup
			Samı	ole Info		П				
Start Depth	End Depth	PID (PPM)	Shake Test	Sample ID	Sample Time	Comment		Lithologic Description	Construction	Lithology
0.0	0.5						(0-6.5) fill; clayey silt, g	gravel, wood, concrete, and asphalt		fill
0.5	1.0									fill
1.0	1.5									fill
1.5	2.0									fill
2.0	2.5									fill
2.5	3.0									fill
3.0	3.5									fill
3.5	4.0									fill
4.0	4.5									fill
4.5	5.0									fill
5.0	5.5									fill
5.5	6.0									fill
6.0	6.5									fill
6.5	7.0						(6.5-11) Fat clay; high p	plasticity; dark grey; dry		СН
7.0	7.5									СН
7.5	8.0									СН
8.0	8.5									СН
8.5	9.0	94								СН
9.0	9.5									СН
9.5	10.0									СН
10.0	10.5									СН
10.5	11.0						(44.40) 5'''			СН
11.0	11.5						(11-13) Silty clay; dark	grey; wet; trace very fine-grained sand		CL_ML
11.5	12.0	52								CL_ML
12.0	12.5									CL_ML
12.5	13.0									CL_ML
13.0	13.5							eak cementation; olive green; dry		SM
13.5	14.0						(13.5-18.5) Fat clay; da laver present at 18.3-1	ork grey; moist; becomes wet at 17 feet, grey silty sand (SM) 8.5 feet		СН
14.0	14.5									СН
14.5	15.0	200								СН

			Samı	ole Info	rmation	1			
Start Depth	End Depth	(Mdd) QId	Shake Test	Sample ID	Sample Time	Comment	Lithologic Description	Construction	Lithology
15.0	15.5		, , , , , , , , , , , , , , , , , , ,	,	Ç,				СН
15.5	16.0								СН
16.0	16.5	51							СН
16.5	17.0								СН
17.0	17.5								СН
17.5	18.0								СН
18.0	18.5	185							СН
18.5	19.0						(18.5-20) Fat clay; dark grey; moist		СН
19.0	19.5								СН
19.5	20.0	152							СН
20.0	20.5						(20-22) Silty clay; low plasticity; dark grey; moist		CL_ML
20.5	21.0								CL_ML
21.0	21.5	178							CL_ML
21.5	22.0	170							CL_ML
22.0	22.5						(22-24) Fat clay; high plasticity; dark grey; wet		СН
22.5	23.0	260							СН
23.0	23.5	200							СН
23.5	24.0	360							СН
24.0	24.5	300					(24-25) Poorly graded sand with silt; weak cementation; wet; fine-grained sand;		SP_SM
24.5	25.0	260					boring terminated at 25 ft bgs		SP_SM
25.0	25.5	200							
25.5	26.0								
26.0	26.5								
26.5	27.0								
27.0	27.5								
27.5	28.0								
Notes:	s:		fication li	nes repre	sent appr		Benton Si Scri Ri en soil types and the transition may be gradual. Water level readings were comple	out nite and een ser ted at	Fill / Other Gravel Sand Silt Clay Bedrock
		2) Field to a photoi	testing va	lues repr	esent tota with a 10	al volatile organic vapors (re D.6 Ev lamp and set to a refe	r may occur due to factors other than those present at the time measurements we ferenced to an isobutylene standard) measured in the headspace of a sealed soil s erence factor of 0.53 (benzene). COVETY ByS=DETOWN GROWING SULLAGE BYS=BDOVE GROWING SULLAGE SAME SAME AS ADD	ample with	

	(SC	OVEF	REIG	iN	Client:	bp Products North America Inc.		
CONSULTIN		NGING	Project:	Light Oils Dock	- I OD-I	LOD-PZ-03				
science, service, solution				Project Number: BP050.138.01						
	D	riller In	format		100. 301	Soil Boring I	Location:	Riverfront Property - Wood River, II Well Informa	tion	
Drilling Drill Rig Drill Mo Driller:	Co.:	Tiller III	Dakota 1 Geoprok Direct Pr A. Sense	Fechnolog pe 6600 ush & HSA	A	Start Date: End Date Clear Method: Clear Depth: Boring Depth: Surface Elevation Coordinate System: Latitude: Longitude:	9/14/2022 9/14/2022 Air Knife 6.5 25 422 WGS-84 38.851253 -90.109692	Bore Diameter (in): Well Depth (ft bgs): Well Diameter (in): Casing Material & Interval (ft bgs): Screen Material & Interval (ft bgs): Filter Material & Interval (ft bgs): Seal Material & Interval: Stickup or Flush: Install Date:	2 2 PVC / PVC / sand / Bentonit	7 2 0 - 22 22 - 27 21 - 27 e / 1 - 21 kup
			Samı	ple Info		n				
Start Depth	End Depth	PID (PPM)	Shake Test	Sample ID	Sample Time	Comment		Lithologic Description	Construction	Lithology
0.0	0.5						(0-6.5) fill; clayey silt, g	gravel, wood, concrete, and asphalt		fill
0.5	1.0									fill
1.0	1.5									fill
1.5	2.0									fill
2.0	2.5									fill
2.5	3.0									fill
3.0	3.5									fill
3.5	4.0									fill
4.0	5.0									fill fill
5.0	5.5									fill
5.5	6.0									fill
6.0	6.5									fill
6.5	7.0						(6.5-9.5) Fat clay; high	plasticity; dark grey; dry		СН
7.0	7.5	18								СН
7.5	8.0									СН
8.0	8.5	71								СН
8.5	9.0	72								СН
9.0	9.5									СН
9.5	10.0	153					(9.5-10) Silt; low plasti			ML
10.0	10.5						(10-13) Silt; low plastic	ity; dark grey; moist; trace clay		ML
10.5	11.0	56								ML
11.0	11.5									ML
11.5	12.0									ML
12.0	12.5	120								ML
12.5	13.0						(12 12 E) Loop else:			ML
13.0	13.5						(13-13.5) Lean clay (13.5-15) Silty sand; fir	ne grained cand		CL
13.5	14.0	170					(13.3-13) Silly Saliu; Tir	E Branica Salla		SM
14.0	14.5									SM
14.5	15.0	186								SM

			Sam	ole Info	rmatio	n			
Start Depth	End Depth	(Mdd) Old	Shake Test	Sample ID	Sample Time	Comment	Lithologic Description	Construction	Lithology
15.0	15.5	_					(15-15.5) Silt		ML
15.5	16.0						(15.5-16.5) Poorly graded sand with silt and gravel		SP_SM
16.0	16.5								SP_SM
16.5	17.0	49					(16.5-20) Lean clay; dark grey; moist		CL
17.0	17.5								CL
17.5	18.0								CL
18.0	18.5	70							CL
18.5	19.0								CL
19.0	19.5								CL
19.5	20.0	228							CL
20.0	20.5						(20-23) Silty clay; low plasticity; dark grey; moist		CL_ML
20.5	21.0	67							CL_ML
21.0	21.5								CL_ML
21.5	22.0							•	CL_ML
22.0	22.5								CL_ML
22.5	23.0	200							CL_ML
23.0	23.5	200					(23-24) Poorly graded sand; weak cementation; wet; fine-grained sand		SP
23.5	24.0	230							SP
24.0	24.5	230					(24-25) Poorly graded sand with silt; wet; fine-grained sand; boring terminated at 25		SP_SM
24.5	25.0						ft bgs		SP_SM
25.0	25.5								
25.5	26.0								
26.0	26.5								
26.5	27.0								
Notes:	ks:	times ar 2) Field	fication li d under testing va	nes repre condition lues repr	esent app s stated. esent tot	Fluctuations of groundwate al volatile organic vapors (re	Key: Cement Grout Bentonite Sand Screen en soil types and the transition may be gradual. Water level readings were completed r may occur due to factors other than those present at the time measurements were ferenced to an isobutylene standard) measured in the headspace of a sealed soil sam	at made.	Fill / Other Gravel Sand Silt Clay Bedrock
Remark	KS:	4) 5) 6) 1) Stratintimes ar 2) Field to a photoi	d under testing va onization	condition lues repr	s stated. esent tot r with a 1	Fluctuations of groundwate al volatile organic vapors (re 0.6 Ev lamp and set to a refe	Sand Screen Riser en soil types and the transition may be gradual. Water level readings were completed r may occur due to factors other than those present at the time measurements were	n	at made.

APPENDIX D Well Construction Logs

TYPE OR PRESS FIRMLY WITH BLACK INK PEN. COMPLETE WITHIN 30 DAYS OF	Date Uf Off Z
WELL COMPLETION AND SEND TO THE APPROPRIATE HEALTH DEPARTMENT.	GEOLOGICAL AND WATER SURVEY WELL RECORD
	13. Property Owner & Products North America Inc. Well # LOD-PZ-01
 Type of Well a. Driven Well Casing diamin. Depthft. 	14 Deiller Acres Serves O
b. Bored Well Buried Slab [] Yes [] No	15. Name of Drilling Co. Dakota Technologies Confany, LLC
Hole Diameterin. toft.;in. toft.;in. toft.	
c. Drilled Well PVC casing Formation packer set at depth offt.	17. Data Deilling Started 09/14/2022
Hole Diameter 6 in. to 27 ft. 0 in. to ft. in. to ft.	17. Date Drilling Started 09/14/2022
	18. Well SITE address 399 South Old St Lawis Rd. Wood River IL 62095 19. Township Name Wood River Township Land ID #
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	19. Township Name Wood Kiver Lownship Land ID#
Chipped 4.5 5046 21 1	20. Subdivision Name Lot #
	21. Location a. County Maison
	b. Township 5N Range 9W Section 28
d. Drilled Well Steel Casing Mechanically Driven [] Yes [] No	c. Quarter Quarter Quarter
Hole Diameterin. toftin. toftin. toft.	d. Coordinates 38.851294 Site Elevation 422 ft. (msl)
	-90.109653
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	22. Casings, Liners* and Screen Information
	Diese (in) Motoriel Laint Stat Size France (ft) To (ft) For Survey Use
	Diant (iii.) Material John Stot Size Flott (ii.) 10 (ii.)
	2,0 PVC Flush .010" 27 22
e. Well finished within Unconsolidated Materials [] Bedrock	
	2.0 PVC Flush (Kish) 22 +3.0
f. Kind of Gravel Sand Pack Grain Size/Supplier # From (ft.) To (ft.)	
5:11ca Sard 12/20 EMI 27 21	
	(*)
	(List reason for liner, type of upper and lower seals installed)
2. Well Use [] Domestic [] Irrigation [] Commercial [] Livestock	
Monitoring J Other	23. Water from, at a depth offt. toft.
3. Date Well Completed 01/4/2022 Well Disinfected [] Yes No Driller's estimated well yield NA gpm	a. Static water level 23.6 ft. below easing which is 3.3 in. above ground
4. Date Permanent Pump Installed NA	b. Pumping level isft. pumpinggpm after pumping forhours
5. Pump Capacity NA gpm Set at (depth) NA ft.	
6 Pitless Adapter Model and Manufacturer A/A	24. Earth Materials Passed Through From (ft.) To (ft.)
7. Well Cap Type and Manufacturer Env. Manufacturing Above Grown 8. Pressure Tank Working Cycle NA gals. Captive At [] Yes No	See Attachel
8. Pressure Tank Working Cycle NA gals. Captive At 1 1 Yes X No	JEE ATTACHER
9. Pump System Disinfected Yes X No	
10. Name of Pump Company NA	
11. Pump Installer NA License # NA	
12. NA License # NA	
Licensed Pump Contractor Signature	
Illinois Department of Public Health	
Division of Environmental Health	
525 W. Jefferson St.	
Springfield, IL 62761	
DO NOT write on these lines	(If dry hole, fill out log and indicate how hole was sealed.)
IMPORTANT NOTICE: This state agency is requesting disclosure of information that is necessary to	
accomplish the statutory purpose as outlined under Public Act 85-0863. DISCLOSURE OF THIS	25. Licensed Water Well Contractor Signature License Number
INFORMATION IS MANDATORY. This form has been approved by the Forms Management Center.	

SEE REVERSE SIDE FOR ADDITIONAL INFORMATION)

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** WATER WELL CONSTRUCTION REPORT

TYPE OR PRESCRIPMLY WITH DLACK INV DEN. COMMUNIC MUTURN TO DAVE OR	Date HIVIT Z
TYPE OR PRESS FIRMLY WITH BLACK INK PEN. COMPLETE WITHIN 30 DAYS OF WELL COMPLETION AND SEND TO THE APPROPRIATE HEALTH DEPARTMENT.	GEOLOGICAL AND WATER SURVEY WELL RECORD
	13. Property Owner of Products North America, Inc. Well # LOD-PZ-02 14. Driller Agren Sense License #
Type of Well a. Driven Well Casing diam,in. Depthft.	14. Driller Agren Sense License #
b. Bored Well Buried Slab [] Yes [] No	15. Name of Drilling Co. Dakota Technologi es Confany, LLC 16. Permit No. Date Issued
Hole Diameterin. toft.;in. toft.;in. toft. c. Drilled Well PVC casing Formation packer set at depth offt.	16. Permit No Date Issued
Hole Diameter 6 in to 28. ft. 0 in to ft. in to ft.	17. Date Drilling Started 09/14/2022
100 Dialetti	18. Well SITE address 399 South Old St Lauis Rd. Wood Kiver IL 62095
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	17. Date Drilling Started 09/14/2022 18. Well SITE address 399 So th Old St Laws Rd. Wood River, IL 62095 19. Township Name Wood River Township Land ID #
Chipped 5 50Lb 22 1	20. Subdivision Name Lot #
	21. Location a. County Malison
	b. Township 5W Range 7W Section 28
d. Drilled Well Steel Casing Mechanically Driven [] Yes [] No	cQuarterQuarterQuarter
Hole Diameterin. toftin. toftin. toft.	d. Coordinates 38.85/269 Site Elevation 122 ft. (msl)
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	22. Casings, Liners* and Screen Information
	Diam (in.) Material Joint Slot Size From (ft.) To (ft.)
	2.0 PVC Flush .010' 28 23
e. Well finished within Unconsolidated Materials [] Bedrock	AIR
	2.0 PVC Flush Kiser 23 +3.0
f. Kind of Gravel Sand Pack Grain Size/Supplier # From (ft.) To (ft.)	
Silia Sarl 12/20 FMT 28 22	
	(*)
2. Well Use [] Domestic [] Irrigation [] Commercial [] Livestock	(List reason for liner, type of upper and lower seals installed)
Monitoring J 1 Other	22 Wester Communication of the
3. Date Well Completed 09/14/2022 Well Disinfected [] Yes DYNo	23. Water fromat a depth offt. toft. a. Static water level 23.0 ft. below easing which is 33 in. above ground
Driller's estimated well yieldgpm	b. Pumping level is ft. pumping gpm after pumping forhours
Date Permanent Pump Installed	o. rumping tever is ic. pumpinggpin after pumping fornous
6. Pitless Adapter Model and Manufacturer	24. Earth Materials Passed Through From (ft.) To (ft.)
7. Well Cap Type and Manufacturer Above Coround Fry Manufacturery	See Attached
7. Well Cap Type and Manufacturer Above Grand, Env. Manufacturing 8. Pressure Tank Working Cycle NA gals. Captive Air [] Yes X No	Jeenman
9. Pump System Disinfected [] Yes No	
10. Name of Pump Company NA	
11. Pump Installer NA License # NA License # NA License # NA	
Licensed Pump Contractor Signature	
Illinois Department of Public Health	
Division of Environmental Health	
525 W. Jefferson St.	
Springfield, IL 62761	
DO NOT write on these lines	(If dry hole, fill out log and indicate how hole was sealed.)
IMPORTANT NOTICE: This state agency is requesting disclosure of information that is necessary to	
accomplish the statutory purpose as outlined under Public Act 85-0863. DISCLOSURE OF THIS INFORMATION IS MANDATORY. This form has been approved by the Forms Management Center.	25. Licensed Water Well Contractor Signature License Number
the same of the sa	

SEE REVERSE SIDE FOR ADDITIONAL INFORMATION)

TYPE OR PRESS FIRMLY WITH BLACK INK PEN. COMPLETE WITHIN 30 DAYS OF	Date HI Off Z
WELL COMPLETION AND SEND TO THE APPROPRIATE HEALTH DEPARTMENT.	GEOLOGICAL AND WATER SURVEY WELL RECORD
	13. Property Owner of Products North America Inc. Well # LOD-PZ-03
Type of Well a, Driven Well Casing diamin. Depthft.	14. Driller Haren Sense License #
b. Bored Well Buried Slab [] Yes [] No	15. Name of Drilling Co. Dakota Technologies Confany, LLC
Hole Diameterin. toft.;in. toft.;in. toft.	16. Permit No Date Issued
c. Drilled Well PVC casing Formation packer set at depth offt.	17. Date Drilling Started 09/14/2022
Hole Diameter 6.0 in. to 27 ft. in. to ft. in. to ft.	18. Well SITE address 399 South Old St Louis Rd. Wood River, IL 62095
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	19. Township Name Wood River Township Land ID#
Chipped 4.5 50Us 24 1	20. Subdivision Name Lot #
Stiffed 1.7	21 Location a County Andisco
	b. Township 5W Range 9W Section 28
d. Drilled Well Steel Casing Mechanically Driven [] Yes [] No	
Hole Diameterin. toftin. toftin. toft.	c. Quarter Quarter Quarter
	d. Coordinates 38.85/253, Site Elevation 422 ft. (msl)
Type of Grout # of Bags Grout Weight From (ft.) To (ft.) Tremie Depth (ft.)	22. Casings, Liners* and Screen Information
	Ear Course Her
	Diam (in.) Material Joint Slot Size From (ft.) To (ft.)
	2.0 Prc Aush .010 27 22
e. Well finished within Unconsolidated Materials [] Bedrock	2 0 Pile FI I NA 22 122
	2.0 PVC Flush Riser 22 +3.0
f. Kind of Gravel Sand Pack Grain Size/Supplier # From (fl.) To (fl.)	*
Silicu Sard 12/20 EMT 27 21	
	(*)
2. Well Use [] Domestic [] Irrigation [] Commercial [] Livestock	(List reason for liner, type of upper and lower seals installed)
Monitoring, Other	
3. Date Well Completed 19/14/2022 Well Disinfected [1 Yes No	23. Water fromat a depth offl. tofl.
3. Date Well Completed 07/14/2022 Well Disinfected [] Yes No Driller's estimated well yield NA gpm	 Static water level 23 ft. below casing which is 33 in. above ground
4. Date Permanent Pump Installed NA	b. Pumping level isft. pumpinggpm after pumping forhours
5. Pump Capacity WW gpm Set at (depth) M ft.	24 Fort Metals Board Thomas
6. Pitless Adapter Model and Manufacturer WA	24. Earth Materials Passed Through From (ft.) To (ft.)
7. Well Cap Type and Manufacturer Above Coround Env. Manufacturing 8. Pressure Tank Working Cycle NA gals. Captive Air 1 Yes No	SeeAttached
8. Pressure Tank Working Cycle 12 N gais. Captive Air [] Les [X] No	
8. Pressure Tank Working Cycle NA gals. Captive Air [] Yes No 9. Pump System Disinfected [] Yes No 10. Name of Pump Company	
AL A	
11. Pump Installer	
Licensed Pump Contractor Signature	
Esteristed 1 mily Community Sugarante	
Illinois Department of Public Health	
Division of Environmental Health	
525 W. Jefferson St.	
Springfield, IL 62761	
DO NOT write on these lines	(If dry hole, fill out log and indicate how hole was sealed.)
IMPORTANT NOTICE: This state agency is requesting disclosure of information that is necessary to	
accomplish the statutory purpose as outlined under Public Act 85-0863. DISCLOSURE OF THIS	25. Licensed Water Well Contractor Signature License Number
INFORMATION IS MANDATORY. This form has been approved by the Forms Management Center.	

Illingis Environmental Receivien Cherry Office 10/06/2025 **** Le 2011 Le 2011

Site Number: 1191155009 County: Madison

Site Name: BP Products North America, Inc Riverfront Prop	perty Well #: LOD-VMP-01
State Plane Coordinate: X Y (or) Latitude: 38 51 4.70	
Surveyed by:	IL Registration #:
Drilling Contractor: Dakota Technologies	Driller: Aaron Sense (Dakota)
Consulting Firm: Sovereign Consulting, Inc.	Geologist: Tom DeReamer (Sovereign)
Drilling Method: Geoprobe 6600 - 3 1/4" HSA	Drilling Fluid (Type): N/A

Logged By: Tom DeReamer (Sovereign)

Report Form

Completed By: Matthew Cauthon (Sovereign)

ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
			0	Top of Protective Casing
				Top of Riser Pipe
Type of Surface Seal:		. —	_0	Ground Surface
Type of Annular Sealant: bentonite			0.25	Top of Annular Sealant
Installation Method: gravity Setting Time: <30 mins		=	N/A	Static Water Level (After Completion)
Type of Bentonite Seal Granular, Peket, Slurry (Choose One)	M M		2	Top of Seal
Installation Method: gravity			6	Top of Sand Pack
Setting Time: 30 mins			7	Top of Screen
Type of Sand Pack: quartz			_12	Bottom of Screen
Grain Size: 10/20 (Sieve Size)			_12	Bottom of Well
Installation Method: gravity Type of Backfill Material: N/A		* Referenced	12 to a National Ge	Bottom of Borehole odetic Datum

Installation Method: N/A

WELL CONSTRUCTION MATERIAL (Choose one type of material for each area)

(if applicable)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Canaan	CC204 CC216 DTEE DVC on Other

CASING MEASURMENTS

Date Started: 09/16/22

Date: 05/25/23

Diameter of Borehole (inches)	3.25
ID of Riser Pipe (inches)	1.0
Protective Casing Length (feet)	1.0
Riser Pipe Length (feet)	7.0
Bottom of Screen to End Cap (feet)	0.1
Screen Length (1st slot to last slot) (feet)	5.0
Total Length of Casing (feet)	12.0
Screen Slot Size **	0.010

_ Date Finished: 09/16/22

^{**}Hand-Slotted Well Screens are Unacceptable

Illingis Environmental Receivien Cherry Office 10/06/2025 **** Le 2011 Le 2011

Site Number: 1191155009 County: Madison

Site Name: BP Products North America, Inc Riverfront Prope	erty	Well #: LOD-VMP-02	
State Plane Coordinate: XY(or) Latitude: 38 51 4.59	Longitude: <u>-90</u> ° <u>6</u> 34.98	Borehole #: LOD-VMP-02	
Surveyed by:	IL Registration #:		
Drilling Contractor: Dakota Technologies	Driller: Aaron Sense (Da	kota)	
Consulting Firm: Sovereign Consulting, Inc.	Geologist: Tom DeRe	amer (Sovereign)	

Drilling Method: Geoprobe 6600 - 3 1/4" HSA Logged By: Tom DeReamer (Sovereign)

Report Form

Completed By: Matthew Cauthon (Sovereign)

IL Registration #:						
Driller: Aaron Sense (Dake	ota)					
Geologist: Tom DeReamer (Sovereign)						
Drilling Fluid (Type): N/A						
Date Started: 09/16/22	Date Finished: 09/16/22					
Data: 05/25/23						

ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
			0	Top of Protective Casing
				Top of Riser Pipe
Type of Surface Seal:		- 	0	Ground Surface
Type of Annular Sealant: bentonite			0.25	Top of Annular Sealant
Installation Method: gravity		=	N/A	Static Water Level (After Completion)
Setting Time: <30 mins				
Type of Bentonite Seal Granular, Pe K et, Slurry (Choose One)			2	Top of Seal
Installation Method: gravity			6	Top of Sand Pack
Setting Time: 30 mins			7	Top of Screen
Type of Sand Pack: quartz			_12	Bottom of Screen
Grain Size: 10/20 (Sieve Size)			12	Bottom of Well
Installation Method: gravity			12	Bottom of Borehole
Type of Backfill Material: $\frac{N/A}{\text{(if applicable)}}$	CAS	* Referenced SING MEASURN	l to a National Ge MENTS	odetic Datum

WELL CONSTRUCTION MATERIAL

Installation Method: N/A

(Choose one type of material for each area)

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PWC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

CASING MEASURMENTS

Diameter of Borehole (inches)	3.25
ID of Riser Pipe (inches)	1.0
Protective Casing Length (feet)	1.0
Riser Pipe Length (feet)	7.0
Bottom of Screen to End Cap (feet)	0.1
Screen Length (1 st slot to last slot) (feet)	5.0
Total Length of Casing (feet)	12.0
Screen Slot Size **	0.010

^{**}Hand-Slotted Well Screens are Unacceptable

Illingis-Environmental Receiving Charles Office 10/06/2025 *** Connection*Report

Site Number: 1191155009 County: Madison

Site Name: BP Products North America, Inc Riverfront Property					Well #: LOD-VMP-03		
State Plane Coordi	nate: X	Y	(or) Latitude:	38°	51 4.47 Longitude: -90°	6 35.08	Borehole #: LOD-VMP-03

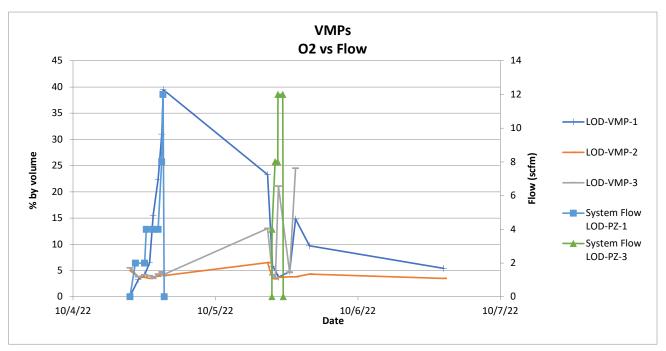
ANNULAR SPACE DETAILS		Elevations (MSL)*	Depths (BGS)	(.01ft.)
				Top of Protective Casing
				Top of Riser Pipe
Type of Surface Seal:		—		Ground Surface
Type of Annular Sealant: bentonite			0.25	Top of Annular Sealant
Installation Method: gravity		=	N/A	Static Water Level (After Completion)
Setting Time: <30 mins				,
Type of Bentonite Seal Granular, Peket, Slurry (Choose One)	5 2 5 2		2	Top of Seal
Installation Method: gravity			6	Top of Sand Pack
Setting Time: 30 mins			7	Top of Screen
Type of Sand Pack: quartz			12	Bottom of Screen
Grain Size: 10/20 (Sieve Size)			12	Bottom of Well
Installation Method: gravity			12	Bottom of Borehole
Type of Backfill Material: N/A		* Referenced	l to a National Ge	odetic Datum
(if applicable)	CAS	SING MEASURN	1ENTS	

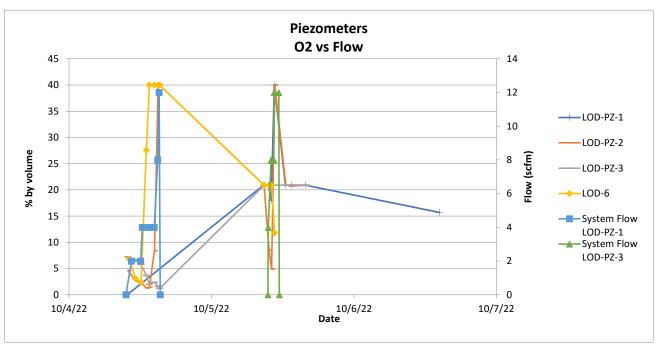
I VII VII NA

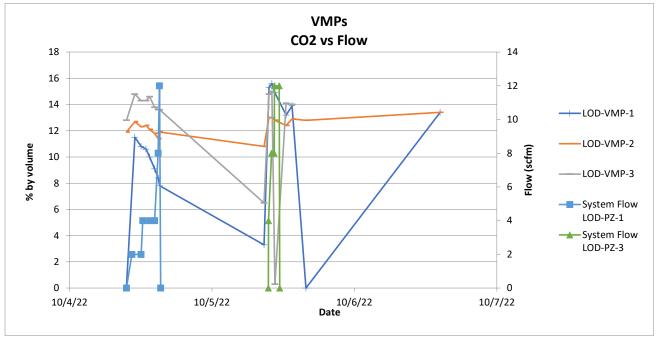
Installation Method: N/A

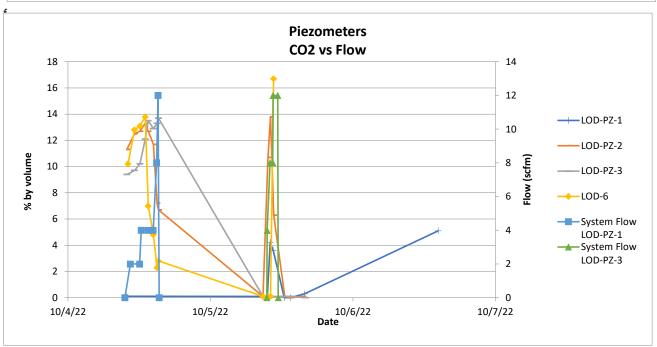
WELL CONSTRUCTION MATERIAL

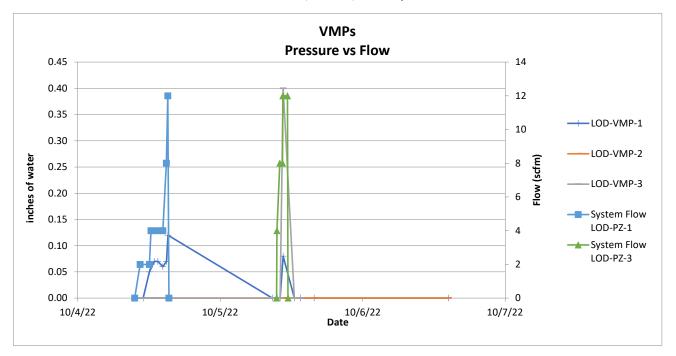
(Choose one type of material for each area)

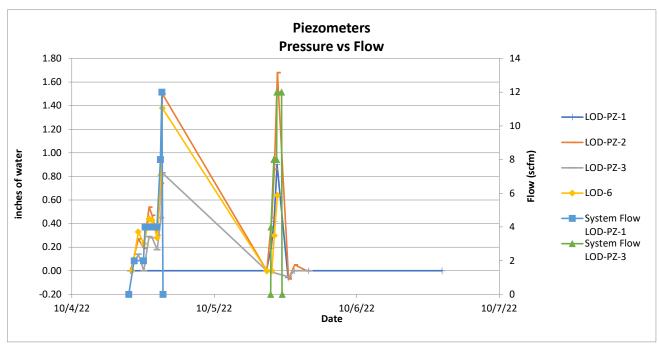

Protective Casing	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PWC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

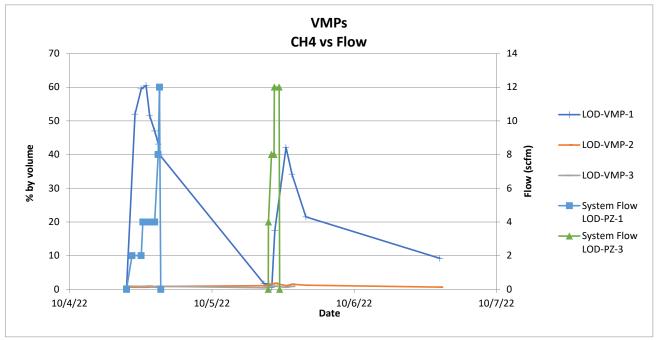

CASING MEASURMENTS

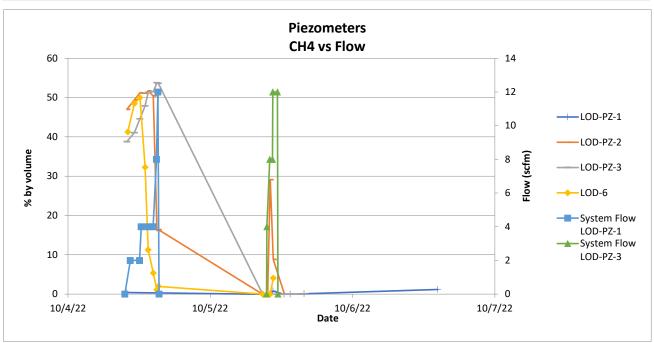

3.25
1.0
1.0
7.0
0.1
5.0
12.0
0.010

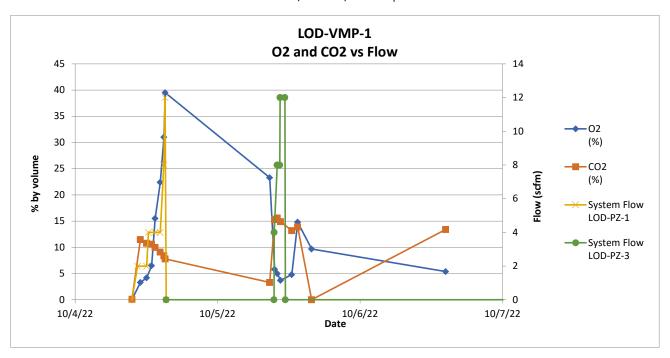

^{**}Hand-Slotted Well Screens are Unacceptable

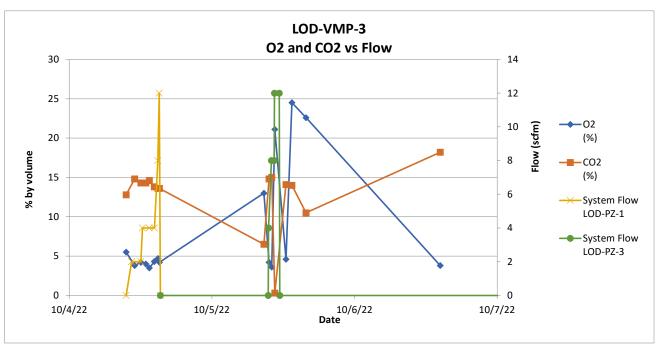

APPENDIX E Sparge Evaluation Monitoring Results

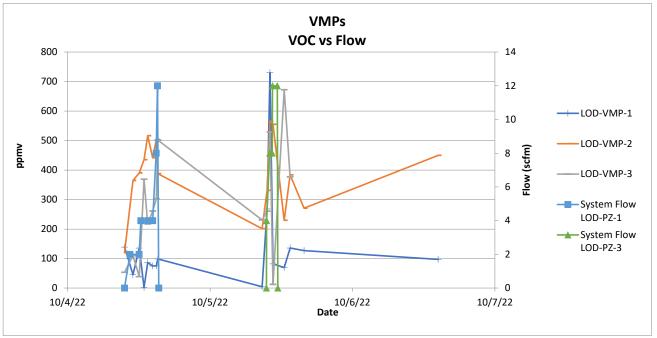


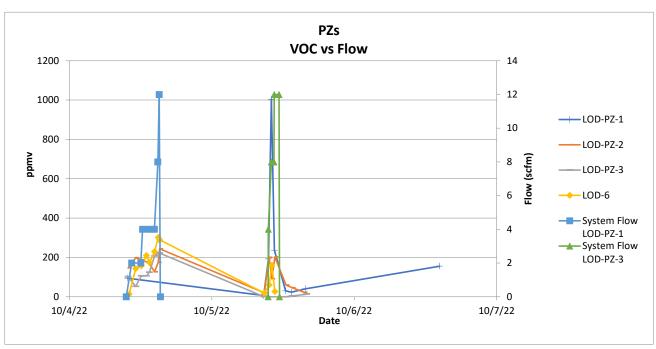


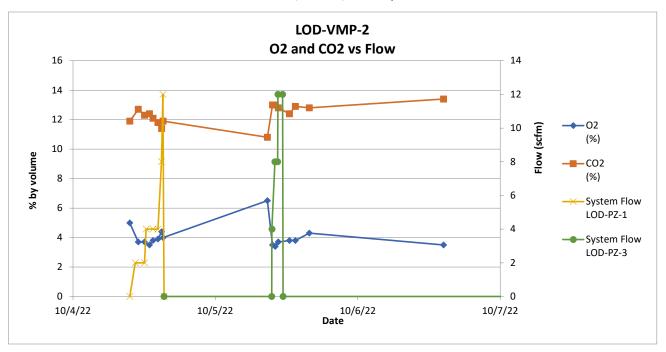


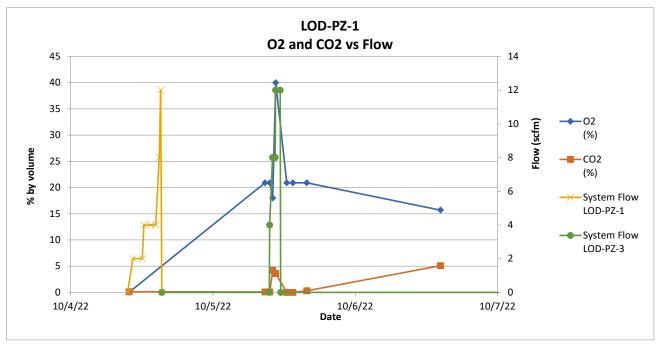


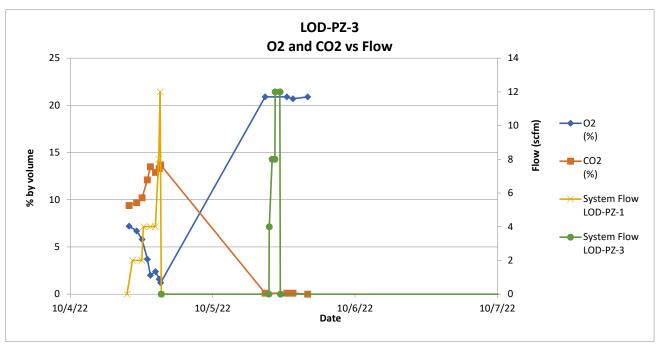


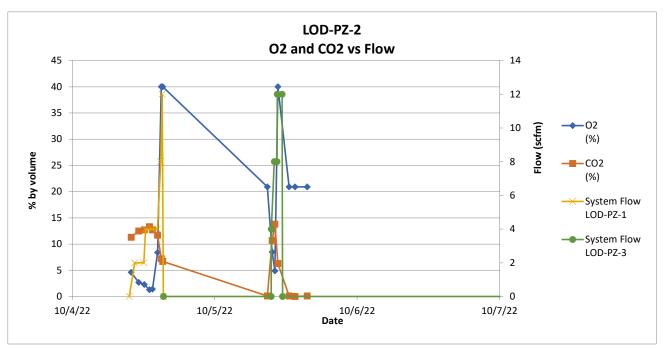


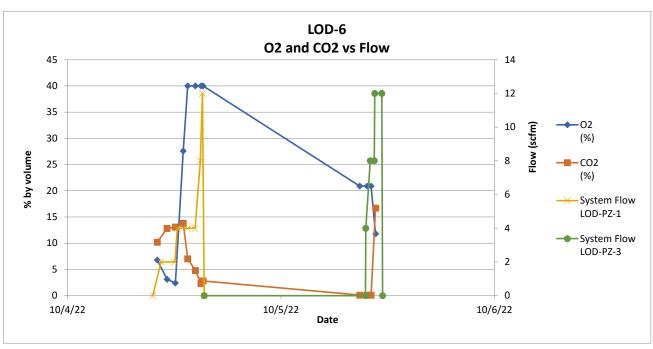




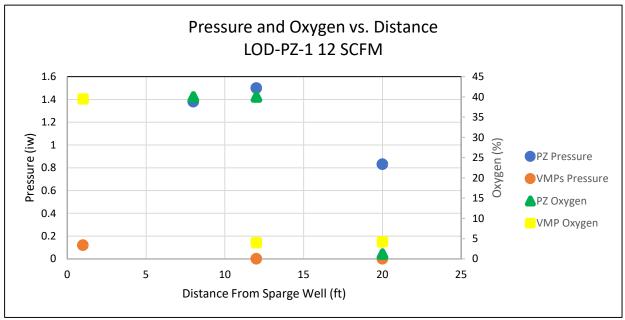


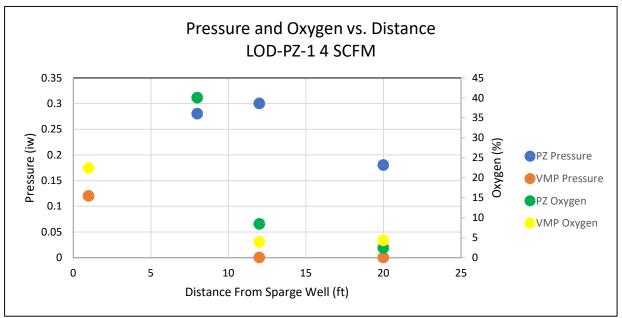


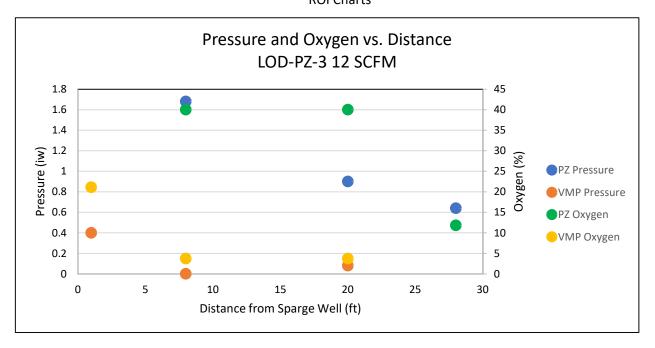




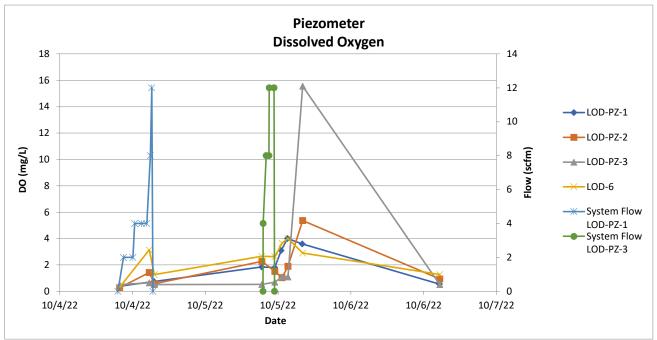
Appendix E

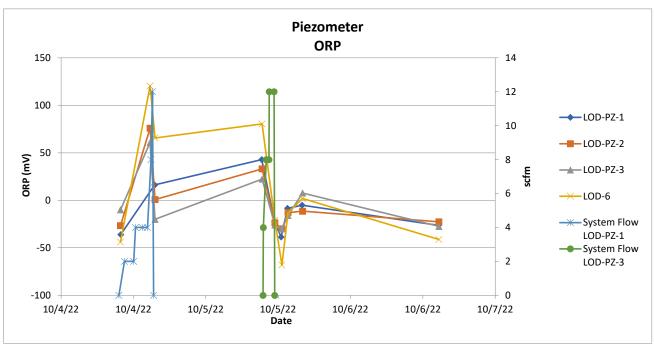

LOD Sparge Test


Soil Gas/Pressure/Flow Graphs

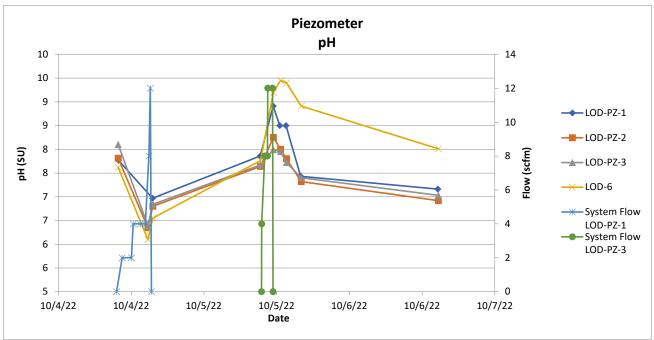


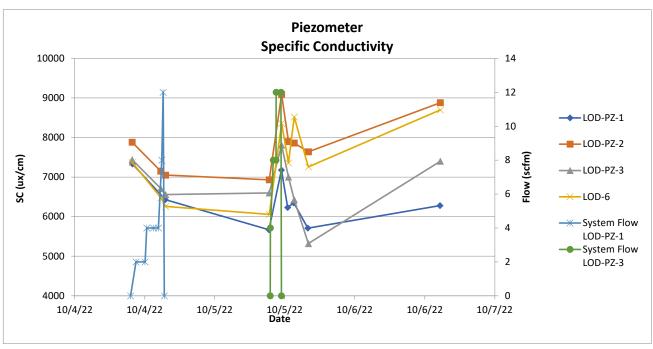
Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** Appendix E LOD Sparge Test ROI Charts





Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001** Appendix E LOD Sparge Test ROI Charts




Appendix E LOD Sparge Test Geochemistry Graphs

Appendix E LOD Sparge Test Geochemistry Graphs

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

ILLINOIS EPA RCRA CORRECTIVE ACTION CERTIFICATION

This certification must accompany any document submitted to Illinois EPA in accordance with the corrective action requirements set forth in a facility's RCRA permit. The original and two copies of all documents submitted must be provided.

Name BP Wood River Riverfront Pr	operty County Madison
Street Address 301 Evans Avenue	Site No. (IEPA) 1191155009
City Wood River	Site No. (USEPA) ILD980503106
Owner Information	3.0 Operator Information
Name BP Products North America I	nc. Name BP Products North America Inc.
Mail Address 301 Evans Avenue	Mail Address 301 Evans Avenue
City Wood River	City Wood River
State IL Zip Code 62095	State IL Zip Code 62095
Contact Name Michelle Knapp	Contact Name Michelle Knapp
Contact Title Liability Manager	Contact Title Liability Manager
Phone 847.346.7112	Phone 847.346.7112
Type of Submission (check applica	ble item and provide requested information, as applicable)
RFI Phase I Workplan/Report	IEPA Permit Log No. B-145R-M-4, M-18, M-14, M-15
RFI Phase II Workplan/Report	Date of Last IEPA Letter on Project May 3, 2023
CMP Report;	Log No. of Last IEPA Letter on Project B-145R-CA-117
Other (describe): Does LOD Area Corrective Action Modificat	s this submittal include groundwater information:
Date of Submittal May 25, 2023	
Description of Cubmittel, a	
	describe what is being submitted and its purpose)
Corrective Action Modification Reques	st for the Light Oils Dock Area at the Riverfront Property.
Documents Submitted (identify all of	documents in submittal, including cover letter; give dates of all documents)
` ,	,

7.0 Certification Statement

(This statement is part of the overall certification being provided by the owner/operator, professional and laboratory in Items 7.1, 7.2 and 7.3 below). The activities described in the subject submittals have been carried out in accordance with procedures approved by Illinois EPA. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Electronic Filing: Received, Clerk's Office 10/06/2025 **PCB 2026-001**
IEPA RCRA Corrective Action Certification

Page 2

For: LOD Area Corrective Action Modification Request

Date of Submission: 5 25 23

7.1 Owner/Operator Certification

(Must be completed for all submittals. Certification and signature requirements are set forth in 35 IAC 702.126.) All submittals pertaining to the corrective action requirements set forth in a RCRA Permit must be signed by the person designated below (or by a duly authorized representative of that person):

1. For a Corporation, by a principal executive officer of at least the level of vice president.

2. the written authorization is provided with this submittal (a copy of a previously submitted

- 2. For a Partnership or Sole Proprietorship, by a general partner or the proprietor, respectively.
- 3. For a Governmental Entity, by either a principal executive officer or a ranking elected official.

A	person	is	a duly	authorized	representative	only	if:
---	--------	----	--------	------------	----------------	------	-----

authorization can be used).

7.2

7.3

Address

City

1. the authorization is made in writing by a person described above; and

Owner Signature:	Date: 5 25 23
Title: Liability Manager	
Operator Signature:	Date: 5 25 23
Title: Liability Manager	
Professional Certification (if necessary)	
Work carried out in this submittal or the regulations may also be subject such as the Illinois Professional Land Surveyor Act of 1989, the Profess Professional Geologist Licensing Act, and the Structural Engineering Lic compliance with these laws and the regulations adopted pursuant to the definitions of these laws must be performed in compliance with them. To violation of these laws to the appropriate regulating authority.	sional Engineering Practice Act of 1989, the censing Act of 1989. No one is relieved from see laws. All work that falls within the scope and
Any person who knowingly makes a false, fictitious, or fraudulent materi EPA commits a Class 4 felony. A second or subsequent offense after c	al statement, orally or in writing, to the Illinois onviction is a Class 3 felony. (415 ILCS 5/44(h))
Professional's Signature: Michael Hoffman Professional's Name Michael J. Horrina	Date: 5 3 53
Address 2412 W. NEBRASKOAUL	Professional a Seal.
City Pzonia	62-0037839 REGISTERED
State 1L Zip Code C1609	PROFESSIONAL
Phone 309 -696-7875	ENGINEER OF
Laboratory Certification (if necessary)	ILINOIS
The sample collection, handling, preservation, preparation and a responsible were carried out in accordance with procedures approached.	nalysis efforts for which this laboratory was roved by Illinois EPA.
Name of Laboratory	
	Date:
Signature of Laboratory Responsible Officer	
Mailing Address of Laboratory	

Name and Title of Laboratory Responsible Officer

Zip Code

BP PRODUCTS NORTH AMERICA INC.

POWER OF ATTORNEY

KNOW ALL MEN BY THESE PRESENTS, that

BP PRODUCTS NORTH AMERICA INC., formerly known as Amoco Oil Company, and successor in interest by merger with BP Exploration & Oil Inc., a corporation organized and existing under the laws of the State of Maryland, United States of America (the "Company"), does hereby make, constitute, designate and appoint:

Bien-Curtin, Michelle	Greco, Chris	McAnulty, Mike
Bryson, Josh	Griffis, Dave	McDonald, Scott
Burmeister, Loren	Halsey, Ron	Melton, Wade
Campbell, Felton	Hanson, Lindy	Onufrak, Nicholas
Crane, Allison	Harris, Jenni	Peterson, Nick
Dippo, Ron	Hilmo, Tim	Pokorny, Luke
Dunlap, Shannon	Jackson, Michael	Schaeffer, Jim
Emmet, Lisa	Johnson, Brian	Seese, Alan
Ferry, Steve	Johnson, Paul	Skance, John C
Frankenthal, John	Knapp, Michelle	Smith, Jim L
Frisch, Greg	Larson, Eric	Wojciechowski, Mary
Gallery, Patricia	Littrell, Lori	

each, as its lawful Attorney-in-Fact (hereinafter referred to as "Attorney-in-Fact") to do and perform the activities listed below in the name of and on behalf and for the benefit of the Company, and to execute and deliver any and all of the following instruments requiring execution and delivery in the name of and on behalf of the Company:

To represent and act on behalf of the Company in all environmental remediation matters and to provide environmental investigation and support regarding any facilities for which the Company is or is alleged to be responsible as a result of the past, present or future operations, assets or holdings of the Company, or any combination thereof. This authority is limited to the following:

- i. In coordination with the procurement specialist assigned by the Company or Remediation Management Services Company ("RMSC"), to enter into and deliver contracts on behalf of the Company with regard to environmental remediation, environmental investigation and related environmental support activities to be undertaken at such facilities with respect to any releases or spills alleged, suspected or confirmed to have come therefrom:
- ii. In coordination with legal counsel assigned by the Company or RMSC, to correspond, communicate and negotiate with, and to settle and/or compromise claims asserted by, any claimants and with any federal, state and/or local governmental agencies with respect to any actual or alleged liability or responsibility of the Company for environmental remediation, environmental investigation and related environmental

support at such facilities, or known, suspected or alleged releases, and the execution and delivery of any and all documents in connection with such matters, as necessary and appropriate;

- iii. In coordination with the legal counsel and procurement specialists assigned by the Company or RMSC, participate in the preparation and negotiation of risk transfer agreements and contracts with qualified environmental suppliers and risk transfer insurance underwriters in support of transactions authorized by the Company; and,
- iv. To execute and deliver any and all documents in connection with the conduct of environmental remediation, environmental investigation and related environmental support activities and plans with respect to any confirmed, suspected or alleged releases or spills, including:
 - a. Preparation, execution and submittal of all necessary applications to obtain permits and/or renewals of such permits, as may be required by state, federal or local authorities;
 - b. In coordination with legal counsel assigned by the Company or RMSC, prepare and execute access agreements for the right of entry to properties owned by affiliates of the Company or third parties;
 - c. Preparation and execution of any and all environmental reports and correspondence to be submitted to any federal, state and/or local governmental agencies, as may be required by any federal, state or local laws, regulations or ordinances;
 - d. Preparation and execution of agency notifications of property transfers required by federal, state or local laws, for the Company's sale of any real property interests in such facilities;
 - e. Preparation and execution of any and all documents relating to well disclosures:
 - f. Preparation, execution and submittal of applications for reimbursement to state insurance funds in accordance with any applicable laws and regulations, and handling any and all appeals from decisions of state insurance funds and/or administrators as authorized by law;
 - g. Preparation, execution and submittal of all applications, forms, waste profiles and other documents, as required by applicable laws, to treat or dispose of hazardous and/or non-hazardous contaminated soil, water or waste at or associated with such facilities in accordance with applicable laws and the waste disposal policies of RMSC and/or the Company.

HEREBY GIVING AND GRANTING said Attorney-in-Fact full power and authority to do and perform all acts necessary and proper to accomplish the foregoing, and hereby ratifying and confirming all that said Attorney-in-Fact shall do or cause to be done by virtue thereof.

THIS POWER OF ATTORNEY contains the following restrictions:

- 1. The authorities described herein are not transferable nor can they be subdelegated to any other individuals.
- 2. The authorities described herein cover or pertain to lands of the United States of America or any state or territory thereof; or oil, gas, and mineral rights owned by

the United States of America or any state or territory thereof; or Tribal and Allotted Indian Lands.

3. The authorities granted herein are granted severally and not jointly to each Attorney-in-Fact.

The power and authority granted herein is subject to the specific limitation that the exercise thereof shall be for the sole and exclusive benefit of the Company pursuant to the power and authority granted herein and shall not be on behalf of any other person in whole or in part.

THIS POWER OF ATTORNEY shall be effective as of March 1, 2023 and shall remain valid until the earlier of any of the following:

- 1. On and through February 28, 2024;
- 2. The date the Attorney-in-Fact ceases to be an employee of the Company or any wholly-owned subsidiary of BP p.l.c.; or
- 3. The date this Power of Attorney is formally revoked by the Company.

[Remainder of Page Intentionally Left Blank; Signature Page Follows]

BP Products North America Inc. has caused this Power of Attorney to be executed by it
duly authorized officer on this day
BP PRODUCTS NORTH AMERICA INC.
— DocuSigned by:

EXHIBIT C

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

2520 WEST ILES AVENUE, P.O. BOX 19276, SPRINGFIELD, ILLINOIS 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JAMES JENNINGS, ACTING DIRECTOR

217/524-3301

CERTIFIED MAIL
RETURN RECEIPT REQUESTED
9589 0710 5270 0389 7041 83

MAY 21 2025

BP Products North America Inc./Riverfront Property Attn: Ms. Michelle Knapp 301 Evans Avenue Wood River, Illinois 62095

Re:

1191155009 -- Madison County

BP Products North America Inc/Riverfront Property

ILD980503106

Log No. B-145R-CA-78 and CA-133

Received: August 19, 2016; and May 25, 2023

RCRA Permit – 24A

Permit CA

Dear Ms. Knapp,

This letter is in response to the following submittals associated with corrective action required by the RCRA Permit for the referenced facility:

Submittal No. 1: The submittal was assigned Log No. B-145R-CA-78, a document entitled, "Response to Conditions 3 and 4", prepared and submitted by Ms. Lori Littrell of Atlantic Richfield Company on behalf of BP Products North America Inc (BP). The subject submittal is dated August 18, 2016, and was received by the Illinois EPA on August 19, 2016. The subject submittal is provided in response to Conditions 3 and 4 of the Illinois EPA letter dated May 20, 2016 (Log No. B-145R-CA-48). The purpose of this document is to: (1) demonstrate the existing groundwater monitoring wells and hydraulic control are adequate for the uppermost aquifer at Parcel B; (2) propose the recovery trench is no longer warranted based on the lack of recoverable free product; and (3) propose quarterly inspections and gauging at the pumps, plus periodic light non-aqueous phase liquid (LNAPL) removal. Submittal No. 1 is superseded by submittal No. 2; therefore, a technical review was not conducted.

<u>Submittal No. 2</u>: The submittal was assigned Log No. B-145R-CA-133, a document entitled, "Corrective Action Modification Request – Light Oils Dock Area", prepared and submitted by Ms. Michelle Knapp, Liability Manager, Remediation Management Services Company, which is an affiliate of BP Products North America Inc., on behalf of BP. The document was dated May 25, 2023, and was received by the Illinois EPA on May 26, 2023. The subject submittal proposes

2125 S. First Street, Champaign, IL 61820 (217) 278-5800 115 S. LaSalle Street, Suite 2203, Chicago, IL 60603 1101 Eastport Plaza Dr., Suite 100, Collinsville, IL 62234 (618) 346-5120 9511 Harrison Street, Des Plaines, IL 60016 (847) 294-4000 595 S. State Street, Elgin, IL 60123 (847) 608-3131 2309 W. Main Street, Suite 116, Marion, IL 62959 (618) 993-7200 412 SW Washington Street, Suite D, Peoria, IL 61602 (309) 671-3022 4302 N. Main Street, Rockford, IL 61103 (815) 987-7760

a biological treatment program at the light oils dock (LOD) Area and proposes collection of data for evaluation of a new remedial approach.

Based on the Illinois EPA's review of the subject submittals, the revisions to the LOD Area groundwater monitoring and corrective measures to address free product and dissolved groundwater contamination proposed in Submittal No. 2 can be approved with the following conditions and modifications:

1. The May 11, 2009 Illinois EPA letter (Log No. B-145-CA-63) outlined requirements for 14 wells to be sampled at the LOD Area. Requirements of Condition 5 of the letter continue to apply, with the exception of the due dates for reporting. Reporting dates in the current permit (Log No. B-145R2) shall be followed:

The uppermost aquifer groundwater monitoring at the LOD Area must continue in accordance with the requirements found in the RCRA Permit and all previous Illinois EPA letters addressing the LOD Area, which includes:

- a. Semi-annual sampling of uppermost aquifer wells LOD-1, LOD-2, LOD-3, LOD-3B, LOD-4, LOD-5, LOD-6, LOD-7, LOD-8, LOD-9, RL-17, RL-17B, and RL-18, for benzene, ethylbenzene, toluene, and xylenes (BETX), and total and dissolved arsenic and lead:
- b. Collection of quarterly fluid level measurements; and
- c. Reporting within the Riverfront Groundwater Corrective Action Semi-annual Reports.
- 2. The request to remove gauging requirements for well G102 cannot be approved. Hydraulic control continues to be required for the remainder of the groundwater management zone (GMZ) and the facility has not provided adequate justification to remove this requirement for the Groundwater Corrective Action Program in Section IV of the permit.
- 3. The Illinois EPA cannot approve the request to remove monitoring wells LOD-1, LOD-2, LOD-5, LOD-6, LOD-7, LOD-9, and RL-17B from the LOD Area monitoring program. The Illinois EPA acknowledges these wells are required to be monitored by the site-wide groundwater corrective action program (Section IV) of the permit; therefore, gauging and monitoring for constituents of concern (COCs) for the LOD Area (benzene, toluene, ethylbenzene, total xylenes (BETX), and total and dissolved arsenic and lead) is readily available and will further support BP's ongoing demonstrations of the effectiveness of the corrective measures. Continue to use data collected at these wells to evaluate the LOD Area conditions and effectiveness of corrective action.

- 4. Biosparging is approved to reduce concentrations of contaminants dissolved in groundwater and create aerobic conditions. The following comments apply:
 - a. Baseline monitoring for the parameters will be completed prior to system startup. It is anticipated the system will be operated for a minimum of 18 months.
 - b. The following parameters and frequency must be conducted at the locations listed in the table below:

Monitoring Activity (frequency)	Description	Locations
Pressure/Soil Gas Monitoring (Monthly)	Collect pressure readings. Use pump on vapor meter to purge well and analyze for soil gases (CH ₄ , CO ₂ , O ₂ , VOCs). Analyze headspace in monitoring wells or piezometers.	New VMPs, monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ 1 through LOD-PZ-6)
Groundwater Geochemistry (Quarterly)	Collect field parameters including depth to water/ LNAPL, pH, DO, ORP, temperature and specific conductivity. Collect groundwater samples for analysis of dissolved gases (CH ₄ , CO ₂ , O ₂ , N ₂), MNA parameters (iron species, nitrogen compounds, sulfate), and metals including arsenic, lead, manganese, magnesium, nickel, and chromium.	Monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)
Groundwater COC (Quarterly)	Collect groundwater samples for analysis of BTEX, TPH-GRO, and TPH-DRO.	Monitoring wells (LOD- 6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)

Notes:

VOCs: volatile organic compounds LNAPL: light non-aqueous phase liquid

BTEX: benzene, toluene, ethylbenzene, total xylenes

TPH-GRO: total petroleum hydrocarbons as gasoline range organics TPH-DRO: total petroleum hydrocarbons as diesel range organics

CH₄: methane, CO₂: carbon dioxide, O₂: oxygen, N₂: nitrogen compounds

c. The monitoring program will support selection of the appropriate time to transition from biosparging to natural attenuation mechanisms enhanced with passive bioventing. The transition to passive bioventing with MNA and MNSZD will be based on the criteria in the table below:

Parameter	Monitoring	Transition Point / Condition
LNAPL	Transmissivity (Tn)	Tn<0.8 ft²/day
(if present >0.5 feet thickness)	testing	-
Dissolved phase benzene	Groundwater sampling	Stable or declining trend indicating
concentrations		remedial objectives will be met within
		5 years
Oxygen and DO	Soil gas measurements	Indication of decrease in oxygen
	at VMPs and dissolved	utilization or reduced source mass,
	gas sampling at	e.g., consistent O ₂ >10% by volume
	monitoring wells	in VMPs and DO >2 mg/L in
		groundwater

Notes:

VMPs: vapor monitoring points

LNAPL: light non-aqueous phase liquid (also referred to as free product for the purposes of this

letter)

DO: dissolved oxygen

d. Upon meeting the requirements of Comment 4.c, passive bioventing with monitored natural attenuation (MNA) and monitored natural source zone depletion (MNSZD) will include the installation of passive biovent wellheads on the 12 biosparge wells, monitoring piezometers, and deeper VMPs. The monitoring program must be implemented following the transition to passive bioventing and to demonstrate natural attenuation is occurring with no increase or migration of dissolved phase constituents:

Monitoring Activity	Description	Locations
Pressure/Soil Gas Monitoring (Quarterly)	Collect pressure readings. Use pump on vapor meter to purge well and analyze for soil gases (CH ₄ , CO ₂ , O ₂ , VOCs). Analyze headspace in monitoring wells or piezometers.	New VMPs, monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)
Groundwater Geochemistry (Semi-Annual)	Collect field parameters including depth to water/ LNAPL, pH, DO, ORP, temperature	Monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)

	conductivity.	
	Collect groundwater samples for analysis of dissolved gases (CH ₄ , CO ₂ , O ₂ , N ₂), MNA parameters (iron species, nitrogen compounds, sulfate), and metals including arsenic, lead, manganese, magnesium, nickel, and chromium.	
Groundwater COC (Semi-Annual)	Soil gas measurements at VMPs and dissolved gas	Monitoring wells (LOD-6, RL-17), and piezometers (LOD-PZ-1 through LOD-PZ-6)
	sampling at monitoring wells	

See notes for above tables as needed to define terms

e. Reporting for the LOD Area must be submitted within Corrective Action Progress Reports in accordance with Section V (Corrective Action Section) of the permit. While the renewed RCRA permit is currently under appeal (Log No. B-145R2), no comments have been associated with reporting requirements for monitoring programs outlined in Illinois EPA letters. Therefore, this condition aligns with the reporting requirements required by Section V.

This action shall constitute Illinois EPA's final action on the subject submittals. The applicant may appeal this final decision to the Illinois Pollution Control Board pursuant to Section 40 of the Illinois Environmental Protection Act (Act) by filing a petition for a hearing within 35 days after the date of issuance of the final decision. However, the 35-day period may be extended for a period of time not to exceed 90 days by written notice from the applicant and the Illinois EPA within the initial 35-day appeal period. If the owner or operator wishes to receive a 90-day extension, a written request that includes a statement of the date the final decision was received, along with a copy of this decision, must be sent to the Illinois EPA as soon as possible.

For information regarding the request for an extension, please contact:

> Illinois Environmental Protection Agency Division of Legal Counsel 2520 West Iles Avenue Post Office Box 19276 Springfield, IL 62794-9276 217/782-5544

For information regarding the filing of an appeal, please contact:

Illinois Pollution Control Board 60 East Van Buren St., Suite 630 Chicago, IL 60605-1241 312/814-3620

Work required by this letter, your submittal or the regulations may also be subject to other laws governing professional services, such as the Illinois Professional Land Surveyor Act of 1989, the Professional Engineering Practice Act of 1989, the Professional Geologist Licensing Act, and the Structural Engineering Licensing Act of 1989. This letter does not relieve anyone from compliance with these laws and the regulations adopted pursuant to these laws. All work that falls within the scope and definitions of these laws must be performed in compliance with them. The Illinois EPA may refer any discovered violation of these laws to the appropriate regulating authority.

If you have any questions regarding this permit, please feel free to contact Shawntay Dial at 217/558-0177 or by email at shawntay.dial@illinois.gov for specific questions related to groundwater issues. All other questions regarding this permit should be referred to Jacob Nutt at 217/524-7048 or by email at jacob.nutt@illinois.gov.

Sincerely,

Joshua L. Rhoades, P.G. Permit Section Manager

Division of Land Pollution Control

Bureau of Land

JLR:SDD:1191155009-RCRA-B145R-CA-78 CA-133-Approval.docx

SDB AMB -INH